On a semantic interpretation of Kant's concept of number

Synthese 121 (3):357-383 (1999)
Abstract
What is central to the progression of a sequence is the idea of succession, which is fundamentally a temporal notion. In Kant's ontology numbers are not objects but rules (schemata) for representing the magnitude of a quantum. The magnitude of a discrete quantum 11...11 is determined by a counting procedure, an operation which can be understood as a mapping from the ordinals to the cardinals. All empirical models for numbers isomorphic to 11...11 must conform to the transcendental determination of time-order. Kant's transcendental model for number entails a procedural semantics in which the semantic value of the number-concept is defined in terms of temporal procedures. A number is constructible if and only if it can be schematized in a procedural form. This representability condition explains how an arbitrarily large number is representable and why Kant thinks that arithmetical statements are synthetic and not analytic.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 12,088
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

20 ( #90,207 of 1,102,013 )

Recent downloads (6 months)

6 ( #52,490 of 1,102,013 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.