The applicability of mathematics as a scientific and a logical problem

Philosophia Mathematica 18 (2):144-165 (2010)
Abstract
This paper explores how to explain the applicability of classical mathematics to the physical world in a radically naturalistic and nominalistic philosophy of mathematics. The applicability claim is first formulated as an ordinary scientific assertion about natural regularity in a class of natural phenomena and then turned into a logical problem by some scientific simplification and abstraction. I argue that there are some genuine logical puzzles regarding applicability and no current philosophy of mathematics has resolved these puzzles. Then I introduce a plan for resolving the logical puzzles of applicability
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,357
External links
  •   Try with proxy.
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA
    Feng Ye (2009). A Naturalistic Interpretation of the Kripkean Modality. Frontiers of Philosophy in China 4 (3):454-470.
    Citations of this work BETA
    Feng Ye (2011). Naturalism and Abstract Entities. International Studies in the Philosophy of Science 24 (2):129-146.
    Carlo Cellucci (2013). Philosophy of Mathematics: Making a Fresh Start. Studies in History and Philosophy of Science Part A 44 (1):32-42.
    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2010-06-05

    Total downloads

    29 ( #50,804 of 1,088,426 )

    Recent downloads (6 months)

    3 ( #30,936 of 1,088,426 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.