Chaitin interview for simply gödel website

Gödel's first incompleteness theorem shows that no axiomatic theory can prove all mathematical truths, while Gödel's second incompleteness theorem shows that a specific mathematical result is unprovable. A famous mathematician of the time, David Hilbert, had asked for a proof that an important axiomatic theory was consistent, and Godel showed that such a proof could not be carried out within the axiomatic theory itself, and presumably could therefore not be established in a convincing way outside of the theory either.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 15,831
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

80 ( #37,001 of 1,724,757 )

Recent downloads (6 months)

2 ( #268,625 of 1,724,757 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.