On universal semiregular invariant measures

Journal of Symbolic Logic 53 (4):1170-1176 (1988)
Abstract
We consider countably additive, nonnegative, extended real-valued measures which vanish on singletons. Such a measure is universal on a set X iff it is defined on all subsets of X and is semiregular iff every set of positive measure contains a subset of positive finite measure. We study the problem of existence of a universal semiregular measure on X which is invariant under a given group of bijections of X. Moreover we discuss some properties of universal, semiregular, invariant measures on groups
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,357
External links
  •   Try with proxy.
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Analytics

    Monthly downloads

    Sorry, there are not enough data points to plot this chart.

    Added to index

    2009-01-28

    Total downloads

    0

    Recent downloads (6 months)

    0

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.