Basic Concepts in Modal Logic

These lecture notes were composed while teaching a class at Stanford and studying the work of Brian Chellas (Modal Logic: An Introduction, Cambridge: Cambridge University Press, 1980), Robert Goldblatt (Logics of Time and Computation, Stanford: CSLI, 1987), George Hughes and Max Cresswell (An Introduction to Modal Logic, London: Methuen, 1968; A Companion to Modal Logic, London: Methuen, 1984), and E. J. Lemmon (An Introduction to Modal Logic, Oxford: Blackwell, 1977). The Chellas text influenced me the most, though the order of presentation is inspired more by Goldblatt.2 My goal was to write a text for dedicated undergraduates with no previous experience in modal logic. The text had to meet the following desiderata: (1) the level of difficulty should depend on how much the student tries to prove on his or her own—it should be an easy text for those who look up all the proofs in the appendix, yet more difficult for those who try to prove everything themselves; (2) philosophers (i.e., colleagues) with a basic training in logic should be able to work through the text on their own; (3) graduate students should find it useful in preparing for a graduate course in modal logic; (4) the text should prepare people for reading advanced texts in modal logic, such as Goldblatt, Chellas, Hughes and Cresswell, and van Benthem, and in particular, it should help the student to see what motivated the choices in these texts; (5) it should link the two conceptions of logic, namely, the conception of a logic as an axiom system (in which the set of theorems is constructed from the bottom up through proof sequences) and the conception of a logic as a set containing initial ‘axioms’ and closed under ‘rules of inference’ (in which the set of theorems is constructed from the top down, by carving out the logic from the set of all formulas as the smallest set closed under the rules); finally, (6) the pace for the presentation of the completeness theorems should be moderate—the text should be intermediate between Goldblatt and Chellas in this regard (in Goldblatt, the completeness proofs come too quickly for the undergraduate, whereas in Chellas, too many unrelated....
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,826
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
D. S. Clarke (1973). Deductive Logic. Carbondale,Southern Illinois University Press.

Monthly downloads

Added to index


Total downloads

108 ( #10,687 of 1,100,145 )

Recent downloads (6 months)

3 ( #127,217 of 1,100,145 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.