Neo-logicism? An ontological reduction of mathematics to metaphysics

Erkenntnis 53 (1-2):219-265 (2000)
Abstract
In this paper, we describe "metaphysical reductions", in which the well-defined terms and predicates of arbitrary mathematical theories are uniquely interpreted within an axiomatic, metaphysical theory of abstract objects. Once certain (constitutive) facts about a mathematical theory T have been added to the metaphysical theory of objects, theorems of the metaphysical theory yield both an analysis of the reference of the terms and predicates of T and an analysis of the truth of the sentences of T. The well-defined terms and predicates of T are analyzed as denoting abstract objects and abstract relations, respectively, in the background metaphysics, and the sentences of T have a reading on which they are true. After the technical details are sketched, the paper concludes with some observations about the approach. One important observation concerns the fact that the proper axioms of the background theory abstract objects can be reformulated in a way that makes them sound more like logical axioms. Some philosophers have argued that we should accept (something like) them as being logical.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,612
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

24 ( #70,447 of 1,098,412 )

Recent downloads (6 months)

2 ( #173,417 of 1,098,412 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.