Branching-time logic with quantification over branches: The point of view of modal logic

Journal of Symbolic Logic 61 (1):1-39 (1996)
Abstract
In Ockhamist branching-time logic [Prior 67], formulas are meant to be evaluated on a specified branch, or history, passing through the moment at hand. The linguistic counterpart of the manifoldness of future is a possibility operator which is read as `at some branch, or history (passing through the moment at hand)'. Both the bundled-trees semantics [Burgess 79] and the $\langle moment, history\rangle$ semantics [Thomason 84] for the possibility operator involve a quantification over sets of moments. The Ockhamist frames are (3-modal) Kripke structures in which this second-order quantification is represented by a first-order quantification. The aim of the present paper is to investigate the notions of modal definability, validity, and axiomatizability concerning 3-modal frames which can be viewed as generalizations of Ockhamist frames
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,750
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

15 ( #106,655 of 1,098,879 )

Recent downloads (6 months)

2 ( #174,745 of 1,098,879 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.