Cut-rule axiomatization of the syntactic calculus L

In Zielonka (1981a, 1989), I found an axiomatics for the product-free calculus L of Lambek whose only rule is the cut rule. Following Buszkowski (1987), we shall call such an axiomatics linear. It was proved that there is no finite axiomatics of that kind. In Lambek's original version of the calculus (cf. Lambek, 1958), sequent antecedents are non empty. By dropping this restriction, we obtain the variant L 0 of L. This modification, introduced in the early 1980s (see, e.g., Buszkowski, 1985; Zielonka, 1981b), did not gain much popularity initially; a more common use of L 0 has only occurred within the last few years (cf. Roorda, 1991: 29). In Zielonka (1988), I established analogous results for the restriction of L 0 to sequents without left (or, equivalently, right) division. Here, I present a similar (cut-rule) axiomatics for the whole of L 0. This paper is an extended, corrected, and completed version of Zielonka (1997). Unlike in Zielonka (1997), the notion of rank of an axiom is introduced which, although inessential for the results given below, may be useful for the expected non-finite-axiomatizability proof.
Keywords axiomatizability  cut rule  Lambek calculus
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    2 ( #258,312 of 1,089,154 )

    Recent downloads (6 months)


    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.