Updating theories

Abstract
Kuipers' choice to let logical models of a theory represent the applications or evidence of that theory leads to various problems in ICR. In this paper I elaborate on four of them. 1. In contrast to applications of a theory, logical models are mutually incompatible. 2. An increase and a decrease of a set of models both represent an increase of logical strength; I call this the ICR paradox of logical strength. 3. The evidence logically implies the strongest empirical law. 4. A hypothesis and its negation can both be false. My conclusion therefore reads that we should not identify (newly invented) applications of a theory with its logical models, but with partial models that can be extended to the logical model(s) of the language used to formulate the theory. As an illustration I give a model theoretical account, based on partial models, of the HD-method and crucial experiments.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,456
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

4 ( #260,134 of 1,102,470 )

Recent downloads (6 months)

1 ( #298,715 of 1,102,470 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.