Pκλ combinatorics II: The RK ordering beneath a supercompact measure

Journal of Symbolic Logic 51 (3):604 - 616 (1986)
Abstract
We characterize some large cardinal properties, such as μ-measurability and P 2 (κ)-measurability, in terms of ultrafilters, and then explore the Rudin-Keisler (RK) relations between these ultrafilters and supercompact measures on P κ (2 κ ). This leads to the characterization of 2 κ -supercompactness in terms of a measure on measure sequences, and also to the study of a certain natural subset, Full κ , of P κ (2 κ ), whose elements code measures on cardinals less than κ. The hypothesis that Full κ is stationary (a weaker assumption than 2 κ -supercompactness) is equivalent to a higher order Lowenheim-Skolem property, and settles a question about directed versus chain-type unions on P κ λ
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,085
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Sorry, there are not enough data points to plot this chart.

Added to index

2009-01-28

Total downloads

2 ( #350,573 of 1,101,623 )

Recent downloads (6 months)

2 ( #178,427 of 1,101,623 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.