Switch to: Citations

Add references

You must login to add references.
  1. Sequence [Laetabundi jubilemus].[author unknown] - 1967 - Mediaeval Studies 29:344-350.
    No categories
     
    Export citation  
     
    Bookmark   19 citations  
  • The Nature and Context of Exploratory Experimentation: An Introduction to Three Case Studies of Exploratory Research.C. Kenneth Waters - 2007 - History and Philosophy of the Life Sciences 29 (3):275 - 284.
    My aim in this article is to introduce readers to the topic of exploratory experimentation and briefly explain how the three articles that follow, by Richard Burian, Kevin Elliott, and Maureen O'Malley, advance our understanding of the nature and significance of exploratory research. I suggest that the distinction between exploratory and theory-driven experimentation is multidimensional and that some of the dimensions are continuums. I point out that exploratory experiments are typically theory-informed even if they are not theory-driven. I also distinguish (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   41 citations  
  • Reductionism redux: Computing the embryo. [REVIEW]Alex Rosenberg - 1997 - Biology and Philosophy 12 (4):445-470.
    This paper argues that the consensus physicalist antireductionism in the philosophy of biology cannot accommodate the research strategy or indeed the recent findings of molecular developmental biology. After describing Wolperts programmatic claims on its behalf, and recent work by Gehring and others to identify the molecular determinants of development, the paper attempts to identify the relationship between evolutionary and developmental biology by reconciling two apparently conflicting accounts of bio-function – Wrights and Nagels (as elaborated by Cummins). Finally, the paper seeks (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   55 citations  
  • Causal democracy and causal contributions in developmental systems theory.Susan Oyama - 2000 - Philosophy of Science 67 (3):347.
    In reworking a variety of biological concepts, Developmental Systems Theory (DST) has made frequent use of parity of reasoning. We have done this to show, for instance, that factors that have similar sorts of impact on a developing organism tend nevertheless to be invested with quite different causal importance. We have made similar arguments about evolutionary processes. Together, these analyses have allowed DST not only to cut through some age-old muddles about the nature of development, but also to effect a (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   38 citations  
  • Thinking about mechanisms.Peter Machamer, Lindley Darden & Carl F. Craver - 2000 - Philosophy of Science 67 (1):1-25.
    The concept of mechanism is analyzed in terms of entities and activities, organized such that they are productive of regular changes. Examples show how mechanisms work in neurobiology and molecular biology. Thinking in terms of mechanisms provides a new framework for addressing many traditional philosophical issues: causality, laws, explanation, reduction, and scientific change.
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   1327 citations  
  • Understanding development.Evelyn Fox Keller - 1999 - Biology and Philosophy 14 (3):321-330.
  • With ‘Genes’ Like That, Who Needs an Environment? Postgenomics’s Argument for the ‘Ontogeny of Information’.Karola Stotz - 2006 - Philosophy of Science 73 (5):905-917.
    The linear sequence specification of a gene product is not provided by the target DNA sequence alone but by the mechanisms of gene expressions. The main actors of these mechanisms, proteins and functional RNAs, relay environmental information to the genome with important consequences to sequence selection and processing. This `postgenomic' reality has implications for our understandings of development not as predetermined by genes but as an epigenetic process. Critics of genetic determinism have long argued that the activity of `genes' and (...)
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   34 citations  
  • Genes in the postgenomic era.Paul E. Griffiths & Karola Stotz - 2006 - Theoretical Medicine and Bioethics 27 (6):499-521.
    We outline three very different concepts of the gene—instrumental, nominal, and postgenomic. The instrumental gene has a critical role in the construction and interpretation of experiments in which the relationship between genotype and phenotype is explored via hybridization between organisms or directly between nucleic acid molecules. It also plays an important theoretical role in the foundations of disciplines such as quantitative genetics and population genetics. The nominal gene is a critical practical tool, allowing stable communication between bioscientists in a wide (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   62 citations  
  • Mechanisms and the nature of causation.Stuart S. Glennan - 1996 - Erkenntnis 44 (1):49--71.
    In this paper I offer an analysis of causation based upon a theory of mechanisms-complex systems whose internal parts interact to produce a system's external behavior. I argue that all but the fundamental laws of physics can be explained by reference to mechanisms. Mechanisms provide an epistemologically unproblematic way to explain the necessity which is often taken to distinguish laws from other generalizations. This account of necessity leads to a theory of causation according to which events are causally related when (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   432 citations  
  • Explanation: a mechanist alternative.William Bechtel & Adele Abrahamsen - 2005 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 36 (2):421-441.
    Explanations in the life sciences frequently involve presenting a model of the mechanism taken to be responsible for a given phenomenon. Such explanations depart in numerous ways from nomological explanations commonly presented in philosophy of science. This paper focuses on three sorts of differences. First, scientists who develop mechanistic explanations are not limited to linguistic representations and logical inference; they frequently employ diagrams to characterize mechanisms and simulations to reason about them. Thus, the epistemic resources for presenting mechanistic explanations are (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   549 citations  
  • Darwinian reductionism, or, How to stop worrying and love molecular biology.Alexander Rosenberg - 2006 - Chicago: University of Chicago Press.
    After the discovery of the structure of DNA in 1953, scientists working in molecular biology embraced reductionism—the theory that all complex systems can be understood in terms of their components. Reductionism, however, has been widely resisted by both nonmolecular biologists and scientists working outside the field of biology. Many of these antireductionists, nevertheless, embrace the notion of physicalism—the idea that all biological processes are physical in nature. How, Alexander Rosenberg asks, can these self-proclaimed physicalists also be antireductionists? With clarity and (...)
    Direct download  
     
    Export citation  
     
    Bookmark   63 citations  
  • Reasoning in biological discoveries.Lindley Darden - manuscript
     
    Export citation  
     
    Bookmark   82 citations  
  • Molecular Epigenesis: Distributed Specificity as a Break in the Central Dogma.Karola Stotz - 2006 - History and Philosophy of the Life Sciences 28 (4):533 - 548.
    The paper argues against the central dogma and its interpretation by C. Kenneth Waters and Alex Rosenberg. I argue that certain phenomena in the regulation of gene expression provide a break with the central dogma, according to which sequence specificity for a gene product must be template derived. My thesis of 'molecular epigenesis' with its three classes of phenomena, sequence 'activation', 'selection', and 'creation', is exemplified by processes such as transcriptional activation, alternative cis- and trans-splicing, and RNA editing. It argues (...)
    Direct download  
     
    Export citation  
     
    Bookmark   40 citations  
  • 2001 and all that: A tale of a third science.Karola Stotz - unknown
    The paper describes the change from molecular genetics to postgenomic biology. It focuses on phenomena in the regulation of gene expression that provide a break with the central dogma, according to which sequence specificity for a gene product must be template derived. In its place we find what is called here ‘constitutive molecular epigenesis’. Its three classes of phenomena, which I call sequence ‘activation’, ‘selection’ and ‘creation’, are exemplified by processes such as transcriptional activation, alternative cis- and trans-splicing, and RNA (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Tracking the shift to 'postgenomics'.Karola Stotz, Adam Bostanci & Paul E. Griffiths - 2006 - Community Genetics 9 (3).
    Current knowledge about the variety and complexity of the processes that allow regulated gene expression in living organisms calls for a new understanding of genes. A ‘postgenomic’ understanding of genes as entities constituted during genome expression is outlined and illustrated with specific examples that formed part of a survey research instrument developed by two of the authors for an ongoing empirical study of conceptual change in contemporary biology.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  • Introduction: What is developmental systems theory?Susan Oyama, Paul Griffiths & Russell D. Gray - 2001 - In Susan Oyama, Paul Griffiths & Russell D. Gray (eds.), Cycles of Contingency: Developmental Systems and Evolution. MIT Press. pp. 1-11.
     
    Export citation  
     
    Bookmark   96 citations  
  • A Kernel of Truth? On the Reality of the Genetic Program.Lenny Moss - 1992 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1992:335 - 348.
    The existence claim of a "genetic program" encoded in the DNA molecule which controls biological processes such as development has been examined. Sources of belief in such an entity are found in the rhetoric of Mendelian genetics, in the informationist speculations of Schrodinger and Delbruck, and in the instrumental efficacy found in the use of certain viral, and molecular genetic techniques. In examining specific research models, it is found that attempts at tracking the source of biological control always leads back (...)
    Direct download  
     
    Export citation  
     
    Bookmark   31 citations