Switch to: Citations

Add references

You must login to add references.
  1. The Unreasonable Richness of Mathematics.Jean Paul Van Bendegem & Bart Van Kerkhove - 2004 - Journal of Cognition and Culture 4 (3-4):525-549.
    The paper gives an impression of the multi-dimensionality of mathematics as a human activity. This 'phenomenological' exercise is performed within an analytic framework that is both an expansion and a refinement of the one proposed by Kitcher. Such a particular tool enables one to retain an integrated picture while nevertheless welcoming an ample diversity of perspectives on mathematical practices, that is, from different disciplines, with different scopes, and at different levels. Its functioning is clarified by fitting in illustrations based on (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • The Creative Growth of Mathematics.Jean Paul van Bendegem - 1999 - Philosophica 63 (1).
  • The Collatz conjecture. A case study in mathematical problem solving.Jean Paul Van Bendegem - 2005 - Logic and Logical Philosophy 14 (1):7-23.
    In previous papers (see Van Bendegem [1993], [1996], [1998], [2000], [2004], [2005], and jointly with Van Kerkhove [2005]) we have proposed the idea that, if we look at what mathematicians do in their daily work, one will find that conceiving and writing down proofs does not fully capture their activity. In other words, it is of course true that mathematicians spend lots of time proving theorems, but at the same time they also spend lots of time preparing the ground, if (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Why Do We Prove Theorems?Yehuda Rav - 1998 - Philosophia Mathematica 6 (3):5-41.
    Ordinary mathematical proofs—to be distinguished from formal derivations—are the locus of mathematical knowledge. Their epistemic content goes way beyond what is summarised in the form of theorems. Objections are raised against the formalist thesis that every mainstream informal proof can be formalised in some first-order formal system. Foundationalism is at the heart of Hilbert's program and calls for methods of formal logic to prove consistency. On the other hand, ‘systemic cohesiveness’, as proposed here, seeks to explicate why mathematical knowledge is (...)
    Direct download  
     
    Export citation  
     
    Bookmark   85 citations  
  • Why Do We Prove Theorems?Yehuda Rav - 1999 - Philosophia Mathematica 7 (1):5-41.
    Ordinary mathematical proofs—to be distinguished from formal derivations—are the locus of mathematical knowledge. Their epistemic content goes way beyond what is summarised in the form of theorems. Objections are raised against the formalist thesis that every mainstream informal proof can be formalised in some first-order formal system. Foundationalism is at the heart of Hilbert's program and calls for methods of formal logic to prove consistency. On the other hand, ‘systemic cohesiveness’, as proposed here, seeks to explicate why mathematical knowledge is (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   89 citations  
  • Mathematics has a front and a back.Reuben Hersh - 1991 - Synthese 88 (2):127 - 133.
    It is explained that, in the sense of the sociologist Erving Goffman, mathematics has a front and a back. Four pervasive myths about mathematics are stated. Acceptance of these myths is related to whether one is located in the front or the back.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   24 citations  
  • What is Cantor's Continuum Problem?Kurt Gödel - 1947 - The American Mathematical Monthly 54 (9):515--525.
  • Mathematical Kinds, or Being Kind to Mathematics.David Corfield - 2004 - Philosophica 74 (2).
    In 1908, Henri Poincar? claimed that: ...the mathematical facts worthy of being studied are those which, by their analogy with other facts, are capable of leading us to the knowledge of a mathematical law, just as experimental facts lead us to the knowledge of a physical law. They are those which reveal to us unsuspected kinship between other facts, long known, but wrongly believed to be strangers to one another. Towards the end of the twentieth century, with many more mathematical (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • Two applications of logic to mathematics.Gaisi Takeuti - 1978 - [Princeton, N.J.]: Princeton University Press.
    Using set theory in the first part of his book, and proof theory in the second, Gaisi Takeuti gives us two examples of how mathematical logic can be used to obtain results previously derived in less elegant fashion by other mathematical techniques, especially analysis. In Part One, he applies Scott- Solovay's Boolean-valued models of set theory to analysis by means of complete Boolean algebras of projections. In Part Two, he develops classical analysis including complex analysis in Peano's arithmetic, showing that (...)
    Direct download  
     
    Export citation  
     
    Bookmark   42 citations  
  • Bangs, Crunches, Whimpers, and Shrieks: Singularities and Acausalities in Relativistic Spacetimes.John Earman & Professor of the History and Philosophy of Science John Earman - 1995 - Oxford University Press.
    Indeed, this is the first serious book-length study of the subject by a philosopher of science.
    Direct download  
     
    Export citation  
     
    Bookmark   121 citations  
  • Supertasks.Jon Pérez Laraudogoitia - 2008 - Stanford Encyclopedia of Philosophy.
  • The unreasonable effectiveness of mathematics in the natural sciences.Eugene Wigner - 1960 - Communications in Pure and Applied Mathematics 13:1-14.
  • Infinite pains: the trouble with supertasks.John Earman & John Norton - 1996 - In Adam Morton & Stephen P. Stich (eds.), Benacerraf and His Critics. Blackwell. pp. 11--271.
  • Proof style and understanding in mathematics I: Visualization, unification and axiom choice.Jamie Tappenden - unknown
    Mathematical investigation, when done well, can confer understanding. This bare observation shouldn’t be controversial; where obstacles appear is rather in the effort to engage this observation with epistemology. The complexity of the issue of course precludes addressing it tout court in one paper, and I’ll just be laying some early foundations here. To this end I’ll narrow the field in two ways. First, I’ll address a specific account of explanation and understanding that applies naturally to mathematical reasoning: the view proposed (...)
    Direct download  
     
    Export citation  
     
    Bookmark   27 citations