8 found
Order:
  1. Adam N. Sanborn & Ricardo Silva (2009). Belief Propagation and Locally Bayesian Learning. In N. A. Taatgen & H. van Rijn (eds.), Proceedings of the 31st Annual Conference of the Cognitive Science Society. 31.
     
    Export citation  
     
    My bibliography   1 citation  
  2.  5
    Thomas L. Griffiths, Adam N. Sanborn, Kevin R. Canini & Daniel J. Navarro (2008). Categorization as Nonparametric Bayesian Density Estimation. In Nick Chater & Mike Oaksford (eds.), The Probabilistic Mind: Prospects for Bayesian Cognitive Science. OUP Oxford
    Direct download  
     
    Export citation  
     
    My bibliography   4 citations  
  3. Thomas L. Griffiths, Adam N. Sanborn, Kevin R. Canini & Navarro & J. Daniel (2008). Categorization as Nonparametric Bayesian Density Estimation. In Nick Chater & Mike Oaksford (eds.), The Probabilistic Mind: Prospects for Bayesian Cognitive Science. OUP Oxford
     
    Export citation  
     
    My bibliography   3 citations  
  4.  1
    Adam N. Sanborn, Thomas L. Griffiths & Daniel J. Navarro (2010). Rational Approximations to Rational Models: Alternative Algorithms for Category Learning. Psychological Review 117 (4):1144-1167.
    No categories
    Direct download  
     
    Export citation  
     
    My bibliography   2 citations  
  5. Adam N. Sanborn, Vikash K. Mansinghka & Thomas L. Griffiths (2013). Reconciling Intuitive Physics and Newtonian Mechanics for Colliding Objects. Psychological Review 120 (2):411-437.
    No categories
    Direct download  
     
    Export citation  
     
    My bibliography   1 citation  
  6.  12
    Adam N. Sanborn, Vikash Mansinghka & Thomas L. Griffiths (2009). A Bayesian Framework for Modeling Intuitive Dynamics. In N. A. Taatgen & H. van Rijn (eds.), Proceedings of the 31st Annual Conference of the Cognitive Science Society.
    Direct download  
     
    Export citation  
     
    My bibliography   1 citation  
  7.  18
    Jay B. Martin, Thomas L. Griffiths & Adam N. Sanborn (2012). Testing the Efficiency of Markov Chain Monte Carlo With People Using Facial Affect Categories. Cognitive Science 36 (1):150-162.
    Exploring how people represent natural categories is a key step toward developing a better understanding of how people learn, form memories, and make decisions. Much research on categorization has focused on artificial categories that are created in the laboratory, since studying natural categories defined on high-dimensional stimuli such as images is methodologically challenging. Recent work has produced methods for identifying these representations from observed behavior, such as reverse correlation (RC). We compare RC against an alternative method for inferring the structure (...)
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography  
  8. Adam N. Sanborn (2014). Testing Bayesian and Heuristic Predictions of Mass Judgments of Colliding Objects. Frontiers in Psychology 5.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography