27 found
Sort by:
  1. Alexander S. Kechris (2011). In Memoriam: Gregory Hjorth 1963—2011. Bulletin of Symbolic Logic 17 (3):471-477.
    Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  2. Samuel R. Buss, Alexander S. Kechris, Anand Pillay & Richard A. Shore (2001). The Prospects for Mathematical Logic in the Twenty-First Century. Bulletin of Symbolic Logic 7 (2):169-196.
    The four authors present their speculations about the future developments of mathematical logic in the twenty-first century. The areas of recursion theory, proof theory and logic for computer science, model theory, and set theory are discussed independently.
    Direct download (6 more)  
     
    My bibliography  
     
    Export citation  
  3. John D. Clemens, Su Gao & Alexander S. Kechris (2001). Polish Metric Spaces: Their Classification and Isometry Groups. Bulletin of Symbolic Logic 7 (3):361-375.
    Direct download (9 more)  
     
    My bibliography  
     
    Export citation  
  4. Alexander S. Kechris (1999). Borel Hierarchy (Σ 0. Bulletin of Symbolic Logic 5 (2).
     
    My bibliography  
     
    Export citation  
  5. Alexander S. Kechris (1999). New Directions in Descriptive Set Theory. Bulletin of Symbolic Logic 5 (2):161-174.
    Direct download (8 more)  
     
    My bibliography  
     
    Export citation  
  6. Greg Hjorth, Alexander S. Kechris & Alain Louveau (1998). Borel Equivalence Relations Induced by Actions of the Symmetric Group. Annals of Pure and Applied Logic 92 (1):63-112.
    Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  7. Greg Hjorth & Alexander S. Kechris (1997). New Dichotomies for Borel Equivalence Relations. Bulletin of Symbolic Logic 3 (3):329-346.
    Direct download (7 more)  
     
    My bibliography  
     
    Export citation  
  8. Greg Hjorth & Alexander S. Kechris (1997). We Announce Two New Dichotomy Theorems for Borel Equivalence Rela-Tions, and Present the Results in Context by Giving an Overview of Related Recent Developments. § 1. Introduction. For X a Polish (Ie, Separable, Completely Metrizable) Space and E a Borel Equivalence Relation on X, a (Complete) Classification. [REVIEW] Bulletin of Symbolic Logic 3 (3).
    Direct download  
     
    My bibliography  
     
    Export citation  
  9. Alexander S. Kechris (1997). 1996-1997 Winter Meeting of the Association for Symbolic Logic. Bulletin of Symbolic Logic 3 (3).
     
    My bibliography  
     
    Export citation  
  10. Greg Hjorth & Alexander S. Kechris (1996). Borel Equivalence Relations and Classifications of Countable Models. Annals of Pure and Applied Logic 82 (3):221-272.
    Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  11. Greg Hjorth & Alexander S. Kechris (1995). Analytic Equivalence Relations and Ulm-Type Classifications. Journal of Symbolic Logic 60 (4):1273-1300.
    Direct download (7 more)  
     
    My bibliography  
     
    Export citation  
  12. Alexander S. Kechris (1993). Amenable Versus Hyperfinite Borel Equivalence Relations. Journal of Symbolic Logic 58 (3):894-907.
    Direct download (7 more)  
     
    My bibliography  
     
    Export citation  
  13. Alexander S. Kechris (1991). Amenable Equivalence Relations and Turing Degrees. Journal of Symbolic Logic 56 (1):182-194.
    Direct download (8 more)  
     
    My bibliography  
     
    Export citation  
  14. Alexander S. Kechris (1991). Annual Meeting of the Association for Symbolic Logic: Berkeley, 1990. Journal of Symbolic Logic 56 (1):361-371.
    Direct download (6 more)  
     
    My bibliography  
     
    Export citation  
  15. Alexander S. Kechris, David Marker & Ramez L. Sami (1989). Π11 Borel Sets. Journal of Symbolic Logic 54 (3):915 - 920.
    Direct download (5 more)  
     
    My bibliography  
     
    Export citation  
  16. Alexander S. Kechris, David Marker & Ramez L. Sami (1989). $Pi^1_1$ Borel Sets. Journal of Symbolic Logic 54 (3):915-920.
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  17. Alexander S. Kechris (1984). The Axiom of Determinancy Implies Dependent Choices in L(R). Journal of Symbolic Logic 49 (1):161 - 173.
    We prove the following Main Theorem: $ZF + AD + V = L(R) \Rightarrow DC$ . As a corollary we have that $\operatorname{Con}(ZF + AD) \Rightarrow \operatorname{Con}(ZF + AD + DC)$ . Combined with the result of Woodin that $\operatorname{Con}(ZF + AD) \Rightarrow \operatorname{Con}(ZF + AD + \neg AC^\omega)$ it follows that DC (as well as AC ω ) is independent relative to ZF + AD. It is finally shown (jointly with H. Woodin) that ZF + AD + ¬ DC (...)
    Direct download (5 more)  
     
    My bibliography  
     
    Export citation  
  18. Leo A. Harrington & Alexander S. Kechris (1981). On the Determinacy of Games on Ordinals. Annals of Mathematical Logic 20 (2):109-154.
    No categories
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  19. Alexander S. Kechris (1981). Forcing with ▵ Perfect Trees and Minimal ▵-Degrees. Journal of Symbolic Logic 46 (4):803 - 816.
    Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  20. Alexander S. Kechris (1981). Forcing with \Triangle Perfect Trees and Minimal \Triangle-Degrees. Journal of Symbolic Logic 46 (4):803-816.
    Direct download (4 more)  
     
    My bibliography  
     
    Export citation  
  21. Alexander S. Kechris (1978). Countable Ordinals and the Analytical Hierarchy, II. Annals of Mathematical Logic 15 (3):193-223.
    No categories
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  22. Alexander S. Kechris (1978). Minimal Upper Bounds for Sequences of Δ12n-Degrees. Journal of Symbolic Logic 43 (3):502 - 507.
    Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  23. Alexander S. Kechris (1978). Minimal Upper Bounds for Sequences of $Delta^1_{2n}$-Degrees. Journal of Symbolic Logic 43 (3):502-507.
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  24. Alexander S. Kechris (1978). The Perfect Set Theorem and Definable Wellorderings of the Continuum. Journal of Symbolic Logic 43 (4):630-634.
    Let Γ be a collection of relations on the reals and let M be a set of reals. We call M a perfect set basis for Γ if every set in Γ with parameters from M which is not totally included in M contains a perfect subset with code in M. A simple elementary proof is given of the following result (assuming mild regularity conditions on Γ and M): If M is a perfect set basis for Γ, the field of (...)
    Direct download (6 more)  
     
    My bibliography  
     
    Export citation  
  25. Leo A. Harrington & Alexander S. Kechris (1975). On Characterizing Spector Classes. Journal of Symbolic Logic 40 (1):19-24.
    Direct download (5 more)  
     
    My bibliography  
     
    Export citation  
  26. Alexander S. Kechris (1974). On Projective Ordinals. Journal of Symbolic Logic 39 (2):269-282.
    Direct download (6 more)  
     
    My bibliography  
     
    Export citation  
  27. Alexander S. Kechris (1973). Measure and Category in Effective Descriptive Set Theory. Annals of Mathematical Logic 5 (4):337-384.
    No categories
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation