14 found
Sort by:
  1. Seema Ahmad & Alistair H. Lachlan (1998). Some Special Pairs of Σ2 E-Degrees. Mathematical Logic Quarterly 44 (4):431-449.
    No categories
    Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  2. Alistair H. Lachlan & Robert I. Soare (1998). Models of Arithmetic and Subuniform Bounds for the Arithmetic Sets. Journal of Symbolic Logic 63 (1):59-72.
    It has been known for more than thirty years that the degree of a non-standard model of true arithmetic is a subuniform upper bound for the arithmetic sets (suub). Here a notion of generic enumeration is presented with the property that the degree of such an enumeration is an suub but not the degree of a non-standard model of true arithmetic. This answers a question posed in the literature.
    Direct download (7 more)  
     
    My bibliography  
     
    Export citation  
  3. Reza Akhtar & Alistair H. Lachlan (1995). On Countable Homogeneous 3-Hypergraphs. Archive for Mathematical Logic 34 (5):331-344.
    We present some results on countable homogeneous 3-hypergraphs. In particular, we show that there is no unexpected homogeneous 3-hypergraph determined by a single constraint.
    No categories
    Direct download (4 more)  
     
    My bibliography  
     
    Export citation  
  4. Alistair H. Lachlan & Allyson Tripp (1995). Finite Homogeneous 3‐Graphs. Mathematical Logic Quarterly 41 (3):287-306.
    No categories
    Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  5. Alistair H. Lachlan & Robert I. Soare (1994). Models of Arithmetic and Upper Bounds for Arithmetic Sets. Journal of Symbolic Logic 59 (3):977-983.
    We settle a question in the literature about degrees of models of true arithmetic and upper bounds for the arithmetic sets. We prove that there is a model of true arithmetic whose degree is not a uniform upper bound for the arithmetic sets. The proof involves two forcing constructions.
    Direct download (7 more)  
     
    My bibliography  
     
    Export citation  
  6. Klaus Ambos-Spies, Alistair H. Lachlan & Robert I. Soare (1993). The Continuity of Cupping to 0'. Annals of Pure and Applied Logic 64 (3):195-209.
    Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  7. Alistair H. Lachlan & Xiaoding Yi (1993). Jump Theorems for REA Operators. Mathematical Logic Quarterly 39 (1):1-6.
    No categories
    Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  8. Alistair H. Lachlan & Richard A. Shore (1992). Then-Rea Enumeration Degrees Are Dense. Archive for Mathematical Logic 31 (4):277-285.
    No categories
    Direct download (4 more)  
     
    My bibliography  
     
    Export citation  
  9. Akira Kanda & Alistair H. Lachlan (1987). Alternative Characterizations of Precomplete Numerations. Zeitschrift für Mathematische Logik Und Grundlagen der Mathematik 33 (2):97-100.
    No categories
    Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  10. Gregory Cherlin, Leo Harrington & Alistair H. Lachlan (1985). ℵ< Sub> 0-Categorical, ℵ< Sub> 0-Stable Structures. Annals of Pure and Applied Logic 28 (2):103-135.
     
    My bibliography  
     
    Export citation  
  11. Julia Knight, Alistair H. Lachlan & Robert I. Soare (1984). Two Theorems on Degrees of Models of True Arithmetic. Journal of Symbolic Logic 49 (2):425-436.
    Direct download (5 more)  
     
    My bibliography  
     
    Export citation  
  12. Michał Krynicki & Alistair H. Lachlan (1979). On the Semantics of the Henkin Quantifier. Journal of Symbolic Logic 44 (2):184-200.
  13. Alistair H. Lachlan (1976). A Recursively Enumerable Degree Which Will Not Split Over All Lesser Ones. Annals of Mathematical Logic 9 (4):307-365.
    No categories
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  14. Alistair H. Lachlan (1973). The Priority Method for the Construction of Recursively Enumerable Sets. In. In A. R. D. Mathias & H. Rogers (eds.), Cambridge Summer School in Mathematical Logic. New York,Springer-Verlag. 299--310.
    No categories
    Direct download  
     
    My bibliography  
     
    Export citation