5 found
Sort by:
  1. Andrés Villaveces (2010). Reseña de "Filosofía Sintética de Las Matemáticas Contemporáneas" de Fernando Zalamea. Ideas y Valores 59 (142):174-182.
    No categories
    Translate to English
    | Direct download  
     
    My bibliography  
     
    Export citation  
  2. Andrés Villaveces (2010). Zalamea, Fernando. Filosofía sintética de las matemáticas contemporáneas. Bogotá: Editorial Universidad Nacional de Colombia, Colección Obra Selecta, 2009. 231 p. [REVIEW] Ideas y Valores 59 (142):174-182.
    No categories
    Translate to English
    | Direct download  
     
    My bibliography  
     
    Export citation  
  3. Saharon Shelah & Andrés Villaveces (1999). Toward Categoricity for Classes with No Maximal Models. Annals of Pure and Applied Logic 97 (1-3):1-25.
    Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  4. Andrés Villaveces (1999). Heights of Models of ZFC and the Existence of End Elementary Extensions II. Journal of Symbolic Logic 64 (3):1111-1124.
    The existence of End Elementary Extensions of models M of ZFC is related to the ordinal height of M, according to classical results due to Keisler, Morley and Silver. In this paper, we further investigate the connection between the height of M and the existence of End Elementary Extensions of M. In particular, we prove that the theory `ZFC + GCH + there exist measurable cardinals + all inaccessible non weakly compact cardinals are possible heights of models with no End (...)
    Direct download (6 more)  
     
    My bibliography  
     
    Export citation  
  5. Andrés Villaveces (1998). Chains of End Elementary Extensions of Models of Set Theory. Journal of Symbolic Logic 63 (3):1116-1136.
    Large cardinals arising from the existence of arbitrarily long end elementary extension chains over models of set theory are studied here. In particular, we show that the large cardinals obtained in this fashion (`unfoldable cardinals') lie in the boundary of the propositions consistent with `V = L' and the existence of 0 ♯ . We also provide an `embedding characterisation' of the unfoldable cardinals and study their preservation and destruction by various forcing constructions.
    Direct download (6 more)  
     
    My bibliography  
     
    Export citation