20 found
Order:
  1. Andreas Baudisch (2000). Closures in ℵ0-Categorical Bilinear Maps. Journal of Symbolic Logic 65 (2):914 - 922.
    It is possible to define a combinatorial closure on alternating bilinear maps with few relations similar to that in [2]. For the ℵ 0 - categorical case we show that this closure is part of the algebraic closure.
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography  
  2. Andreas Baudisch (1984). Magidor-Malitz Quantifiers in Modules. Journal of Symbolic Logic 49 (1):1-8.
    We prove the elimination of Magidor-Malitz quantifiers for R-modules relative to certain Q 2 α -core sentences and positive primitive formulas. For complete extensions of the elementary theory of R-modules it follows that all Ramsey quantifiers (ℵ 0 -interpretation) are eliminable. By a result of Baldwin and Kueker [1] this implies that there is no R-module having the finite cover property.
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography  
  3.  4
    Andreas Baudisch (1982). Decidability and Stability of Free Nilpotent Lie Algebras and Free Nilpotent P-Groups of Finite Exponent. Annals of Mathematical Logic 23 (1):1-25.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography   7 citations  
  4.  8
    Andreas Baudisch & Anand Pillay (2000). A Free Pseudospace. Journal of Symbolic Logic 65 (1):443-460.
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography   3 citations  
  5.  7
    Andreas Baudisch (ed.) (1980). Decidability and Generalized Quantifiers. Akademie-Verlag.
    Direct download  
     
    Export citation  
     
    My bibliography   4 citations  
  6.  5
    Andreas Baudisch, Amador Martin-Pizarro & Martin Ziegler (2006). Fusion Over a Vector Space. Journal of Mathematical Logic 6 (2):141-162.
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  7.  4
    Andreas Baudisch (forthcoming). Neostability-Properties of Fraïssé Limits of 2-Nilpotent Groups of Exponent $${P > 2}$$ P > 2. Archive for Mathematical Logic.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  8.  4
    Andreas Baudisch (1977). The Theory of Abelian Groups With the Quantifier. Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 23 (27-30):447-462.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  9.  4
    Andreas Baudisch (1981). Formulas ofL Where Aa is Not in The Scope of “¬”. Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 27 (16-17):249-254.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  10.  6
    Andreas Baudisch (1991). A Construction of Superstable NDOP-NOTOP Groups. Journal of Symbolic Logic 56 (4):1385-1390.
    The paper continues [1]. Let S be a complete theory of ultraflat (e.g. planar) graphs as introduced in [4]. We show a strong form of NOTOP for S: The union of two models M1 and M2, independent over a common elementary submodel M0, is the primary model over M1 ∪ M2 of S. Then by results of [1] Mekler's construction [6] gives for such a theory S of nice ultraflat graphs a superstable 2-step-nilpotent group of exponent $p (>2)$ with NDOP (...)
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  11.  6
    Andreas Baudisch (1989). Classification and Interpretation. Journal of Symbolic Logic 54 (1):138-159.
    Let S and T be countable complete theories. We assume that T is superstable without the dimensional order property, and S is interpretable in T in such a way that every model of S is coded in a model of T. We show that S does not have the dimensional order property, and we discuss the question of whether $\operatorname{Depth}(S) \leq \operatorname{Depth}(T)$ . For Mekler's uniform interpretation of arbitrary theories S of finite similarity type into suitable theories T s of (...)
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  12.  4
    Andreas Baudisch (1986). On Elementary Properties of Free Lie Algebras. Annals of Pure and Applied Logic 30 (2):121-136.
    The elementary theory of a nontrivial free Lie algebra over a commutative integral domain is unstable and has the strict order property.
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  13.  1
    Andreas Baudisch (1977). The Theory of Abelian Groups With the Quantifier (≦ X). Mathematical Logic Quarterly 23 (27‐30):447-462.
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  14.  5
    Andreas Baudisch (2002). Generic Variations of Models of T. Journal of Symbolic Logic 67 (3):1025-1038.
    Let T be a model-complete theory that eliminates the quantifier $\exists^\infty x$ . For T we construct a theory T+ such that any element in a model of T+ determines a model of T. We show that T+ has a model companion T1. We can iterate the construction. The produced theories are investigated.
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography  
  15.  11
    Andreas Baudisch (2009). The Additive Collapse. Journal of Mathematical Logic 9 (2):241-284.
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography  
  16.  8
    Andreas Baudisch (1987). On Two Hierarchies of Dimensions. Journal of Symbolic Logic 52 (4):959-968.
    Let T be a countable, complete, ω-stable, nonmultidimensional theory. By Lascar [7], in T eq there is in every dimension of T a type with Lascar rank ω α for some α. We give sufficient conditions for α to coincide with the level of that dimension in Pillay's [10] RK-hierarchy of dimensions computed in T eq . In particular, this is fulfilled for modules.
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography  
  17.  1
    Andreas Baudisch (1975). Die Elementare Theorie der Gruppe vom Typ p∞ mit Untergruppen. Mathematical Logic Quarterly 21 (1):347-352.
    Translate
      Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  18.  1
    Andreas Baudisch (2002). Mekler's Construction Preserves CM-Triviality. Annals of Pure and Applied Logic 115 (1-3):115-173.
    For every structure M of finite signature Mekler 781) has constructed a group G such that for every κ the maximal number of n -types over an elementary equivalent model of cardinality κ is the same for M and G . These groups are nilpotent of class 2 and of exponent p , where p is a fixed prime greater than 2. We consider stable structures M only and show that M is CM -trivial if and only if G is (...)
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  19.  2
    Andreas Baudisch (1981). Formulas of L(Aa) Where Aa is Not in The Scope of “¬”. Mathematical Logic Quarterly 27 (16‐17):249-254.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  20. Andreas Baudisch (1996). Another Stable Group. Annals of Pure and Applied Logic 80 (2):109-138.
    In a recent communication an uncountably categorical group has been constructed that has a non-locally-modular geometry and does not allow the interpretation of a field. We consider a system Δ of elementary axioms fulfilled by some special subgroups of the above group. We show that Δ is complete and stable, but not superstable. It is not even a R-group in the sense discussed by Wagner.
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography