20 found
Order:
  1. Andreas Baudisch (2000). Closures in ℵ0-Categorical Bilinear Maps. Journal of Symbolic Logic 65 (2):914 - 922.
    It is possible to define a combinatorial closure on alternating bilinear maps with few relations similar to that in [2]. For the ℵ 0 - categorical case we show that this closure is part of the algebraic closure.
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography  
  2. Andreas Baudisch (1984). Magidor-Malitz Quantifiers in Modules. Journal of Symbolic Logic 49 (1):1-8.
    We prove the elimination of Magidor-Malitz quantifiers for R-modules relative to certain Q 2 α -core sentences and positive primitive formulas. For complete extensions of the elementary theory of R-modules it follows that all Ramsey quantifiers (ℵ 0 -interpretation) are eliminable. By a result of Baldwin and Kueker [1] this implies that there is no R-module having the finite cover property.
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography  
  3.  4
    Andreas Baudisch (1982). Decidability and Stability of Free Nilpotent Lie Algebras and Free Nilpotent P-Groups of Finite Exponent. Annals of Mathematical Logic 23 (1):1-25.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography   7 citations  
  4.  8
    Andreas Baudisch & Anand Pillay (2000). A Free Pseudospace. Journal of Symbolic Logic 65 (1):443-460.
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography   3 citations  
  5.  6
    Andreas Baudisch (ed.) (1980). Decidability and Generalized Quantifiers. Akademie-Verlag.
    Direct download  
     
    Export citation  
     
    My bibliography   4 citations  
  6.  4
    Andreas Baudisch (forthcoming). Neostability-Properties of Fraïssé Limits of 2-Nilpotent Groups of Exponent $${P > 2}$$ P > 2. Archive for Mathematical Logic.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  7.  4
    Andreas Baudisch (1977). The Theory of Abelian Groups With the Quantifier. Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 23 (27-30):447-462.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  8.  5
    Andreas Baudisch, Amador Martin-Pizarro & Martin Ziegler (2006). Fusion Over a Vector Space. Journal of Mathematical Logic 6 (2):141-162.
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  9.  4
    Andreas Baudisch (1981). Formulas ofL Where Aa is Not in The Scope of “¬”. Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 27 (16-17):249-254.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  10.  6
    Andreas Baudisch (1991). A Construction of Superstable NDOP-NOTOP Groups. Journal of Symbolic Logic 56 (4):1385-1390.
    The paper continues [1]. Let S be a complete theory of ultraflat (e.g. planar) graphs as introduced in [4]. We show a strong form of NOTOP for S: The union of two models M1 and M2, independent over a common elementary submodel M0, is the primary model over M1 ∪ M2 of S. Then by results of [1] Mekler's construction [6] gives for such a theory S of nice ultraflat graphs a superstable 2-step-nilpotent group of exponent $p (>2)$ with NDOP (...)
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  11.  4
    Andreas Baudisch (1986). On Elementary Properties of Free Lie Algebras. Annals of Pure and Applied Logic 30 (2):121-136.
    The elementary theory of a nontrivial free Lie algebra over a commutative integral domain is unstable and has the strict order property.
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  12.  6
    Andreas Baudisch (1989). Classification and Interpretation. Journal of Symbolic Logic 54 (1):138-159.
    Let S and T be countable complete theories. We assume that T is superstable without the dimensional order property, and S is interpretable in T in such a way that every model of S is coded in a model of T. We show that S does not have the dimensional order property, and we discuss the question of whether $\operatorname{Depth}(S) \leq \operatorname{Depth}(T)$ . For Mekler's uniform interpretation of arbitrary theories S of finite similarity type into suitable theories T s of (...)
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  13.  5
    Andreas Baudisch (2002). Generic Variations of Models of T. Journal of Symbolic Logic 67 (3):1025-1038.
    Let T be a model-complete theory that eliminates the quantifier $\exists^\infty x$ . For T we construct a theory T+ such that any element in a model of T+ determines a model of T. We show that T+ has a model companion T1. We can iterate the construction. The produced theories are investigated.
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography  
  14.  1
    Andreas Baudisch (1977). The Theory of Abelian Groups With the Quantifier (≦ X). Mathematical Logic Quarterly 23 (27‐30):447-462.
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  15.  10
    Andreas Baudisch (2009). The Additive Collapse. Journal of Mathematical Logic 9 (2):241-284.
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography  
  16.  8
    Andreas Baudisch (1987). On Two Hierarchies of Dimensions. Journal of Symbolic Logic 52 (4):959-968.
    Let T be a countable, complete, ω-stable, nonmultidimensional theory. By Lascar [7], in T eq there is in every dimension of T a type with Lascar rank ω α for some α. We give sufficient conditions for α to coincide with the level of that dimension in Pillay's [10] RK-hierarchy of dimensions computed in T eq . In particular, this is fulfilled for modules.
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography  
  17.  1
    Andreas Baudisch (1975). Die Elementare Theorie der Gruppe vom Typ p∞ mit Untergruppen. Mathematical Logic Quarterly 21 (1):347-352.
    Translate
      Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  18.  1
    Andreas Baudisch (2002). Mekler's Construction Preserves CM-Triviality. Annals of Pure and Applied Logic 115 (1-3):115-173.
    For every structure M of finite signature Mekler 781) has constructed a group G such that for every κ the maximal number of n -types over an elementary equivalent model of cardinality κ is the same for M and G . These groups are nilpotent of class 2 and of exponent p , where p is a fixed prime greater than 2. We consider stable structures M only and show that M is CM -trivial if and only if G is (...)
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  19.  2
    Andreas Baudisch (1981). Formulas of L(Aa) Where Aa is Not in The Scope of “¬”. Mathematical Logic Quarterly 27 (16‐17):249-254.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  20. Andreas Baudisch (1996). Another Stable Group. Annals of Pure and Applied Logic 80 (2):109-138.
    In a recent communication an uncountably categorical group has been constructed that has a non-locally-modular geometry and does not allow the interpretation of a field. We consider a system Δ of elementary axioms fulfilled by some special subgroups of the above group. We show that Δ is complete and stable, but not superstable. It is not even a R-group in the sense discussed by Wagner.
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography