22 found
Order:
  1.  19
    Bruno Scarpellini (1962). Die Nichtaxiomatisierbarkeit Des Unendlichwertigen Prädikatenkalküls Von Łukasiewicz. Journal of Symbolic Logic 27 (2):159-170.
  2.  30
    Bruno Scarpellini (2003). Two Undecidable Problems of Analysis. Minds and Machines 13 (1):49-77.
  3.  11
    Peter Buser & Bruno Scarpellini (2010). Recursive Analysis of Singular Ordinary Differential Equations. Annals of Pure and Applied Logic 162 (1):20-35.
    We investigate systems of ordinary differential equations with a parameter. We show that under suitable assumptions on the systems the solutions are computable in the sense of recursive analysis. As an application we give a complete characterization of the recursively enumerable sets using Fourier coefficients of recursive analytic functions that are generated by differential equations and elementary operations.
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography  
  4.  5
    Bruno Scarpellini (1972). A Formally Constructive Model for Barrecursion of Higher Types. Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 18 (21-24):321-383.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  5.  1
    Peter Buser & Bruno Scarpellini (2016). Undecidability Through Fourier Series. Annals of Pure and Applied Logic 167 (7):507-524.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  6.  5
    Bruno Scarpellini (1963). Zwei Unentscheidbare Probleme Der Analysis. Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 9 (18-20):265-289.
    No categories
    Translate
      Direct download (2 more)  
     
    Export citation  
     
    My bibliography   4 citations  
  7.  20
    Bruno Scarpellini (2003). Comments on `Two Undecidable Problems of Analysis'. Minds and Machines 13 (1):79-85.
    We first discuss some technical questions which arise in connection with the construction of undecidable propositions in analysis, in particular in connection with the notion of the normal form of a function representing a predicate. Then it is stressed that while a function f(x) may be computable in the sense of recursive function theory, it may nevertheless have undecidable properties in the realm of Fourier analysis. This has an implication for a conjecture of Penrose's which states that classical physics is (...)
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  8. Bruno Scarpellini (1971). Proof Theory and Intuitionistic Systems. New York,Springer-Verlag.
  9.  4
    Bruno Scarpellini (1984). Complete Second Order Spectra. Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 30 (32-34):509-524.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  10.  4
    Bruno Scarpellini (1985). Lower Bound Results on Lengths of Second-Order Formulas. Annals of Pure and Applied Logic 29 (1):29-58.
  11.  1
    Bruno Scarpellini (1972). Induction and Transfinite Induction in Intuitionistic Systems. Annals of Mathematical Logic 4 (2):173-227.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography   2 citations  
  12.  5
    Bruno Scarpellini (1966). On a Family of Models of Zermelo-Fraenkel Set Theory. Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 12 (1):191-204.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  13.  1
    Bruno Scarpellini (1973). On Barinduction of Higher Types for Decidable Predicates. Annals of Mathematical Logic 5 (2):77-163.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  14.  3
    Bruno Scarpellini (1972). A Formally Constructive Model for Barrecursion of Higher Types. Mathematical Logic Quarterly 18 (21‐24):321-383.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  15.  1
    Bruno Scarpellini (1984). Complete Second Order Spectra. Mathematical Logic Quarterly 30 (32‐34):509-524.
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  16.  2
    Bruno Scarpellini (1971). Review: C. C. Chang, Logic with Positive and Negative Truth Values. [REVIEW] Journal of Symbolic Logic 36 (2):331-332.
    Direct download  
     
    Export citation  
     
    My bibliography  
  17.  1
    Bruno Scarpellini (1971). Review: L. P. Belluce, C. C. Chang, A Weak Completeness Theorem for Infinite Valued First-Order Logic. [REVIEW] Journal of Symbolic Logic 36 (2):332-332.
    Direct download  
     
    Export citation  
     
    My bibliography  
  18.  1
    Bruno Scarpellini (1971). Review: L. P. Belluce, Further Results on Infinite Valued Predicate Logic. [REVIEW] Journal of Symbolic Logic 36 (2):332-332.
    Direct download  
     
    Export citation  
     
    My bibliography  
  19. Bruno Scarpellini, L. P. Belluce & C. C. Chang (1971). A Weak Completeness Theorem for Infinite Valued First-Order Logic. Journal of Symbolic Logic 36 (2):332.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  20. Bruno Scarpellini (1971). Belluce L. P. And Chang C. C.. A Weak Completeness Theorem for Infinite Valued First-Order Logic. Journal of Symbolic Logic 36 (2):332.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  21. Bruno Scarpellini (1971). Chang C. C.. Logic with Positive and Negative Truth Values. Proceedings of a Colloquium on Modal and Many-Valued Logics, Helsinki, 23–26 August, 1962, Acta Philosophica Fennica, No. 16, Helsinki 1963, Pp. 19–39. [REVIEW] Journal of Symbolic Logic 36 (2):331-332.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  22. Bruno Scarpellini (1972). Preface. Annals of Mathematical Logic 4 (4):341.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography