22 found
Sort by:
Disambiguations:
David Malament [13]David B. Malament [9]
  1. David Malament, Gravity and Spatial Geometry‘.
    Philosophers of science have written at great length about the geometric structure of physical space. But they have devoted their attention primarily to the question of the epistemic status of our attributions of geometric structure. They have debated whether our attributions are a priori truths, empirical discoveries, or, in a special sense, matters of stipulation or convention. lt is the goal of this paper to explore a quite different issue the role played by assumptions of spatial geometry within physical theory, (...)
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  2. David B. Malament (2012). Topics in the Foundations of General Relativity and Newtonian Gravitation Theory. Chicago.
    1.1 Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Tangent Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (...)
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  3. David Malament, A Remark About the "Geodesic Principle" in General Relativity.
    It is often claimed that the geodesic principle can be recovered as a theorem in general relativity. Indeed, it is claimed that it is a consequence of Einstein's equation (or of the conservation principle that is, itself, a consequence of that equation). These claims are certainly correct, but it may be worth drawing attention to one small qualification. Though the geodesic principle can be recovered as theorem in general relativity, it is not a consequence of Einstein's equation (or the conservation (...)
    Translate to English
    | Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  4. David Malament, Note on Carnap's “on the Dependence of the Properties of Space Upon Those of Time”.
    Carnap’s goal in the paper is to make precise a sense in which, if relativity theory is correct, statements about the topological structure of physical space can be reduced to statements about temporal or causal order. In this note, I reconstruct Carnap’s account, indicate a number of technical problems, suggest how they might be fixed and, finally, contrast Carnap’s work here with that done earlier by the British mathematician A. A. Robb.
    Translate to English
    | Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  5. David Malament, On the Status of the "Geodesic Law" in General Relativity.
    Harvey Brown believes it is crucially important that the "geodesic principle" in general relativity is an immediate consequence of Einstein's equation and, for this reason, has a different status within the theory than other basic principles regarding, for example, the behavior of light rays and clocks, and the speed with which energy can propagate. He takes the geodesic principle to be an essential element of general relativity itself, while the latter are better seen as contingent facts about the particular matter (...)
    Translate to English
    | Direct download  
     
    My bibliography  
     
    Export citation  
  6. David Malament (2008). Norton's Slippery Slope. Philosophy of Science 75 (5):799-816.
    In my contribution to the Symposium ("On the Vagaries of Determinism and Indeterminism"), I will identify several issues that arise in trying to decide whether Newtonian particle mechanics qualifies as a deterministic theory. I'll also give a mini-tutorial on the geometry and dynamical properties of Norton's dome surface. The goal is to better understand how his example works, and better appreciate just how wonderfully strange it is.
    Direct download (7 more)  
     
    My bibliography  
     
    Export citation  
  7. David Malament (2006). Classical Relativity Theory. In Jeremy N. Butterfield & John Earman (eds.), Philosophy of Physics. Elsevier.
    This survey article is divided into two parts. In the first (section 2), I give a brief account of the structure of classical relativity theory. In the second (section 3), I discuss three special topics: (i) the status of the relative simultaneity relation in the context of Minkowski spacetime; (ii) the ``geometrized" version of Newtonian gravitation theory (also known as Newton-Cartan theory); and (iii) the possibility of recovering the global geometric structure of spacetime from its ``causal structure".
    Direct download (4 more)  
     
    My bibliography  
     
    Export citation  
  8. David Malament (2004). On the Time Reversal Invariance of Classical Electromagnetic Theory. Studies in History and Philosophy of Science Part B 35 (2):295-315.
    David Albert claims that classical electromagnetic theory is not time reversal invariant. He acknowledges that all physics books say that it is, but claims they are ``simply wrong" because they rely on an incorrect account of how the time reversal operator acts on magnetic fields. On that account, electric fields are left intact by the operator, but magnetic fields are inverted. Albert sees no reason for the asymmetric treatment, and insists that neither field should be inverted. I argue, to the (...)
    Direct download (9 more)  
     
    My bibliography  
     
    Export citation  
  9. David B. Malament (2003). On Relative Orbital Rotation in Relativity Theory. In A. Ashtekar (ed.), Revisiting the Foundations of Relativistic Physics. 175--190.
    No categories
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  10. David B. Malament (ed.) (2002). Reading Natural Philosophy: Essays in the History and Philosophy of Science and Mathematics. Open Court.
    In this book, 13 leading philosophers of science focus on the work of Professor Howard Stein, best known for his study of the intimate connection between ...
    No categories
    Translate to English
    | Direct download  
     
    My bibliography  
     
    Export citation  
  11. David B. Malament, A No-Go Theorem About Rotation in Relativity Theory.
    Within the framework of general relativity, in some cases at least, it is a delicate and interesting question just what it means to say that an extended body is or is not "rotating". It is so for two reasons. First, one can easily think of different criteria of rotation. Though they agree if the background spacetime structure is sufficiently simple, they do not do so in general. Second, none of the criteria fully answers to our classical intuitions. Each one exhibits (...)
     
    My bibliography  
     
    Export citation  
  12. David B. Malament, On Relative Orbital Rotation in Relativity Theory.
    We consider the following question within both Newtonian physics and relativity theory. "Given two point particles X and Y, if Y is rotating relative to X, does it follow that X is rotating relative to Y?" As it stands the question is ambiguous. We discuss one way to make it precise and show that, on that reading at least, the answers given by the two theories are radically different. The relation of relative orbital rotation turns out to be symmetric in (...)
    Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  13. David Malament (1996). In Defense of Dogma: Why There Cannot Be a Relativistic Quantum Mechanical Theory of (Localizable) Particles. In R. Clifton (ed.), Perspectives on Quantum Reality. Kluwer.
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  14. David B. Malament (1995). Is Newtonian Cosmology Really Inconsistent? Philosophy of Science 62 (4):489-510.
    John Norton has recently argued that Newtonian gravitation theory (at least as applied to cosmological contexts where one envisions the possibility of a homogeneous mass distribution throughout all of space) is inconsistent. I am not convinced. Traditional formulations of the theory may seem to break down in cases of the sort Norton considers. But the difficulties they face are only apparent. They are artifacts of the formulations themselves, and disappear if one passes to the so-called "geometrized" formulation of the theory.
    Direct download (5 more)  
     
    My bibliography  
     
    Export citation  
  15. David B. Malament (1992). Book Review:Quantum Probability--Quantum Logic Itamar Pitowsky. [REVIEW] Philosophy of Science 59 (2):300-.
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  16. David Malament (1985). A Modest Remark About Reichenbach, Rotation, and General Relativity. Philosophy of Science 52 (4):615-620.
    An interesting difficulty arises if one tries to reconcile Reichenbach's views about "absolute" rotation in general relativity with his commitment to a "causal theory of space-time structure." This difficulty is made precise in the form of a simple theorem about relativistic space-time geometry.
    Direct download (5 more)  
     
    My bibliography  
     
    Export citation  
  17. David B. Malament (1984). "Time Travel" in the Godel Universe. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1984:91 - 100.
    The paper first tries to explain how the possibility of "time travel" arises in the Godel universe. It then goes on to discuss a technical problem conerning minimal acceleration requirements for time travel. A theorem is stated and a conjecture posed. If the latter is correct, time travel can be ruled out as a practical possibility in the Godel universe.
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  18. Dorothy Grover, David Malament & Brian Skyrms (1982). Leslie Tharp 1940-1981. Proceedings and Addresses of the American Philosophical Association 56 (1):100 -.
    No categories
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  19. David B. Malament & Sandy L. Zabell (1980). Why Gibbs Phase Averages Work--The Role of Ergodic Theory. Philosophy of Science 47 (3):339-349.
    We propose an "explanation scheme" for why the Gibbs phase average technique in classical equilibrium statistical mechanics works. Our account emphasizes the importance of the Khinchin-Lanford dispersion theorems. We suggest that ergodicity does play a role, but not the one usually assigned to it.
    Direct download (5 more)  
     
    My bibliography  
     
    Export citation  
  20. David Malament (1977). Causal Theories of Time and the Conventionality of Simultaneity. Noûs 11 (3):293-300.
    Direct download (4 more)  
     
    My bibliography  
     
    Export citation  
  21. David Malament, Does the Causal Structure of Space-Time Determine its Geometry?
    Translate to English
    |
     
    My bibliography  
     
    Export citation  
  22. David Malament (1972). Selective Conscientious Objection and Gillette Decision. Philosophy and Public Affairs 1 (4):363-386.