17 found
Order:
Disambiguations:
David Pincus [16]David I. Pincus [1]
  1. Anne C. Morel, Ronald Harrop, Miriam Lucian & David Pincus (1974). Meeting of the Association for Symbolic Logic Seattle 1973. Journal of Symbolic Logic 39 (1):195-208.
  2. David Pincus & Robert M. Solovay (1977). Definability of Measures and Ultrafilters. Journal of Symbolic Logic 42 (2):179-190.
  3.  1
    Douglas F. Watt & David I. Pincus (2004). Neural Substrates of Consciousness: Implications for Clinical Psychiatry. In Jaak Panksepp (ed.), Textbook of Biological Psychiatry. Wiley-Liss 75-110.
  4.  9
    David Pincus (1972). Zermelo-Fraenkel Consistency Results by Fraenkel-Mostowski Methods. Journal of Symbolic Logic 37 (4):721-743.
  5.  5
    David Pincus (1974). On the Independence of the Kinna Wagner Principle. Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 20 (31-33):503-516.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography   2 citations  
  6.  4
    David Pincus (1974). Review: J. D. Halpern, H. Lauchli, A Partition Theorem; J. D. Halpern, A. Levy, The Boolean Prime Ideal Theorem Does Not Imply the Axiom of Choice. [REVIEW] Journal of Symbolic Logic 39 (1):181-182.
  7.  1
    David Pincus (1977). Adding Dependent Choice. Annals of Mathematical Logic 11 (1):105-145.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography   3 citations  
  8.  8
    David Pincus (1971). Support Structures for the Axiom of Choice. Journal of Symbolic Logic 36 (1):28-38.
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography  
  9.  2
    David Pincus (1987). Review: Herman Rubin, Jean E. Rubin, Equivalents of the Axiom of Choice, II. [REVIEW] Journal of Symbolic Logic 52 (3):867-869.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  10.  1
    David Pincus (1975). Review: Azriel Levy, J. W. Addison, Leon Henkin, Alfred Tarski, The Fraenkel-Mostowski Method for Independence Proofs in Set Theory; Paul E. Howard, Limitations on the Fraenkel-Mostowski Method of Independence Proofs. [REVIEW] Journal of Symbolic Logic 40 (4):631-631.
    Direct download  
     
    Export citation  
     
    My bibliography  
  11.  3
    David Pincus (1997). The Dense Linear Ordering Principle. Journal of Symbolic Logic 62 (2):438-456.
    Let DO denote the principle: Every infinite set has a dense linear ordering. DO is compared to other ordering principles such as O, the Linear Ordering principle, KW, the Kinna-Wagner Principle, and PI, the Prime Ideal Theorem, in ZF, Zermelo-Fraenkel set theory without AC, the Axiom of Choice. The main result is: Theorem. $AC \Longrightarrow KW \Longrightarrow DO \Longrightarrow O$ , and none of the implications is reversible in ZF + PI. The first and third implications and their irreversibilities were (...)
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography  
  12.  1
    David Pincus (1975). Review: A. Levy, The Interdependence of Certain Consequences of the Axiom of Choice. [REVIEW] Journal of Symbolic Logic 40 (3):461-461.
  13. Stephen J. Guastello, Matthijs Koopmans & David Pincus (eds.) (2009). Chaos and Complexity in Psychology: The Theory of Nonlinear Dynamical Systems. Cambridge University Press.
  14. David Pincus (1974). Halpern J. D. And Läuchli H.. A Partition Theorem. Transactions of the American Mathematical Society, Vol. 124 , Pp. 360–367.Halpern J. D. And Lévy A.. The Boolean Prime Ideal Theorem Does Not Imply the Axiom of Choice. Axiomatic Set Theory, Proceedings of Symposia in Pure Mathematics, Vol. 13 Part 1, American Mathematical Society, Providence, Rhode Island, 1971, Pp. 83–134. [REVIEW] Journal of Symbolic Logic 39 (1):181-182.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  15. David Pincus (1975). Lévy A.. The Interdependence of Certain Consequences of the Axiom of Choice. Fundamenta Mathematicae, Vol. 54 No. 2 , Pp. 135–157. [REVIEW] Journal of Symbolic Logic 40 (3):461.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  16. David Pincus (1975). Lévy Azriel. The Fraenkel-Moslowski Method for Independence Proofs in Set Theory. The Theory of Models, Proceedings of the 1963 International Symposium at Berkeley, Edited by Addison J. W., Leon Henkin, and Alfred Tarski, Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Company, Amsterdam 1965, Pp. 221–228.Howard Paul E.. Limitations on the Fraenkel-Mostowski Method of Independence Proofs. [REVIEW] Journal of Symbolic Logic 40 (4):631.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  17. David Pincus (1987). Rubin Herman and Rubin Jean E.. Equivalents of the Axiom of Choice, II. Studies in Logic and the Foundations of Mathematics, Vol. 116. North-Holland, Amsterdam, New York, and Oxford, 1985, Xxviii + 322 Pp. [REVIEW] Journal of Symbolic Logic 52 (3):867-869.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography