28 found
Order:
  1. Solomon Feferman, J. N. Crossley, Maurice Boffa, Dirk van Dalen & Kenneth Mcaloon (1984). A Language and Axioms for Explicit Mathematics. Journal of Symbolic Logic 49 (1):308-311.
    Direct download  
     
    Export citation  
     
    My bibliography   34 citations  
  2.  60
    Dirk van Dalen & Heinz-Dieter Ebbinghaus (2000). Dedicated to Mrs. Gertrud Zermelo on the Occasion of Her 95th Birthday. Bulletin of Symbolic Logic 6 (2).
    Direct download  
     
    Export citation  
     
    My bibliography  
  3.  12
    Mark Van Atten, Dirk van Dalen & Richard Tieszen (2002). Brouwer and Weyl: The Phenomenology and Mathematics of the Intuitive Continuumt. Philosophia Mathematica 10 (2):203-226.
  4.  50
    Mark van Atten, Dirk van Dalen & And Richard Tieszen (2002). Brouwer and Weyl: The Phenomenology and Mathematics of the Intuitive Continuumt. Philosophia Mathematica 10 (2):203-226.
    Brouwer and Weyl recognized that the intuitive continuum requires a mathematical analysis of a kind that set theory is not able to provide. As an alternative, Brouwer introduced choice sequences. We first describe the features of the intuitive continuum that prompted this development, focusing in particular on the flow of internal time as described in Husserl's phenomenology. Then we look at choice sequences and their logic. Finally, we investigate the differences between Brouwer and Weyl, and argue that Weyl's conception of (...)
    Direct download (6 more)  
     
    Export citation  
     
    My bibliography   2 citations  
  5.  24
    Dirk Van Dalen & Heinz-Dieter Ebbinghaus (2000). Zermelo and the Skolem Paradox. Bulletin of Symbolic Logic 6 (2):145-161.
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography   3 citations  
  6.  17
    Dirk van Dalen (1999). From Brouwerian Counter Examples to the Creating Subject. Studia Logica 62 (2):305-314.
    The original Brouwerian counter examples were algorithmic in nature; after the introduction of choice sequences, Brouwer devised a version which did not depend on algorithms. This is the origin of the creating subject technique. The method allowed stronger refutations of classical principles. Here it is used to show that negative dense subsets of the continuum are indecomposable.
    Direct download (6 more)  
     
    Export citation  
     
    My bibliography   3 citations  
  7. Dirk van Dalen (2000). Fraenkel's Book Zehn Vorlesungen Über Die Grundlegung der Mengenlehre,[Fraenkel 1927] Was About to Appear. With the Grundlagenstreit Reaching (in Print!) a Level of Personal Abuse Un-Usual in the Quiet Circles of Pure Mathematics, Brouwer Was Rather Sensitive, Where the Expositions of His Ideas Were Concerned. So When He Thought That. Bulletin of Symbolic Logic 6 (3).
     
    Export citation  
     
    My bibliography   3 citations  
  8.  11
    Dirk Van Dalen (1974). Jacques Herbrand: Logical Writings. [REVIEW] Journal of Philosophy 71 (15):544-549.
    No categories
    Direct download  
     
    Export citation  
     
    My bibliography  
  9.  4
    Dirk van Dalen (1968). Fans Generated by Nondeterministic Automata. Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 14 (18):273-278.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  10.  32
    Dirk Van Dalen (1995). Hermann Weyl's Intuitionistic Mathematics. Bulletin of Symbolic Logic 1 (2):145-169.
    Direct download (6 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  11.  15
    Dirk van Dalen, Snapshots From Brouwer's Universe.
    Direct download  
     
    Export citation  
     
    My bibliography  
  12.  2
    Dirk van Dalen (2001). Mystic, Geometer, and Intuitionist. The Life of L. E. J. Brouwer. Volume 1. The Dawning Revolution. Bulletin of Symbolic Logic 7 (1):62-65.
    Direct download  
     
    Export citation  
     
    My bibliography   1 citation  
  13.  7
    Dirk van Dalen (1997). How Connected is the Intuitionistic Continuum? Journal of Symbolic Logic 62 (4):1147-1150.
  14. Dirk van Dalen (1995). Dedicated to Dana Scott on His Sixtieth Birthday. Bulletin of Symbolic Logic 1 (2).
     
    Export citation  
     
    My bibliography   1 citation  
  15.  29
    Mark van Atten & Dirk van Dalen (2002). Arguments for the Continuity Principle. Bulletin of Symbolic Logic 8 (3):329-347.
    Direct download (9 more)  
     
    Export citation  
     
    My bibliography  
  16.  8
    Dirk van Dalen (1985). Eine Bemerkung zum Aufsatz „Der Fundamentalsatz der Algebra und der Intuitionismus “von H. Kneser. Archive for Mathematical Logic 25 (1):43-44.
    Translate
      Direct download  
     
    Export citation  
     
    My bibliography  
  17.  3
    Dirk van Dalen (1974). Variants of Rescher's Semantics for Preference Logic and Some Completeness Theorems. Studia Logica 33 (2):163-181.
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  18.  19
    Dirk Van Dalen (2000). Brouwer and Fraenkel on Intuitionism. Bulletin of Symbolic Logic 6 (3):284-310.
  19.  2
    Dirk van Dalen (1995). Why Constructive Mathematics? Vienna Circle Institute Yearbook 3:141-157.
    The situation in constructive mathematics in the nineties is so vastly different from that in the thirties, that it is worthwhile to pause a moment to survey the development in the intermediate years. In doing so, I follow the example of Heyting, who at certain intervals took stock of intuitionistic mathematics, which for a long time was the only variety of constructive mathematics. Heyting entered the foundational debate in 1930 at the occasion of the famous Königsberg meeting.
    Direct download  
     
    Export citation  
     
    My bibliography  
  20.  3
    Dirk van Dalen (1969). Review: Elliott Mendelson, Introduction to Mathematical Logic. [REVIEW] Journal of Symbolic Logic 34 (1):110-111.
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  21.  5
    Dirk Van Dalen (1968). Reducibilities in Intuitionistic Topology. Journal of Symbolic Logic 33 (3):412-417.
  22.  2
    Dirk van Dalen (1968). Fans Generated by Nondeterministic Automata. Mathematical Logic Quarterly 14 (18):273-278.
  23.  2
    Dirk van Dalen (1983). Review: M. P. Fourman, D. S. Scott, C. J. Mulvey, Sheaves and Logic. [REVIEW] Journal of Symbolic Logic 48 (4):1201-1203.
  24. Dirk van Dalen (1989). Algorithms and Decision Problems: A Crash Course in Recursion Theory. Journal of Symbolic Logic 54 (3):1094-1095.
    Direct download  
     
    Export citation  
     
    My bibliography  
  25. Dirk van Dalen & Marc Bezem (eds.) (1997). Computer Science Logic. Springer.
    No categories
     
    Export citation  
     
    My bibliography  
  26. Dirk Van Dalen (2000). Heinz-Dieter Ebbinghaus. Zermelo and the Skolem Paradox. Bulletin of Symbolic Logic 1 (2):145-161.
     
    Export citation  
     
    My bibliography  
  27. Dirk van Dalen (2007). Mystic, Geometer, and Intuitionist. The Life of L. E. J. Brouwer. Volume 2: Hope and Disillusion. Studia Logica 87 (1):135-138.
     
    Export citation  
     
    My bibliography  
  28. Mark van Atten & Dirk van Dalen (2002). Where Α and Range Over Choice Sequences of Natural Numbers, M and X Over Natural Numbers, and Αm Stands for〈 Α (0), Α (1),..., Α (M− 1)〉, the Initial Segment of Α of Length M. An Immediate Consequence of WC-N is That All Full Functions Are Contin-Uous, and, as a Corollary, That the Continuum is Unsplittable [28]. Note That. [REVIEW] Bulletin of Symbolic Logic 8 (3).
     
    Export citation  
     
    My bibliography