19 found
Sort by:
  1. Mark van Atten & Dirk van Dalen (2002). Arguments for the Continuity Principle. Bulletin of Symbolic Logic 8 (3):329-347.
    Direct download (10 more)  
     
    My bibliography  
     
    Export citation  
  2. Mark van Atten & Dirk van Dalen (2002). Where Α and Range Over Choice Sequences of Natural Numbers, M and X Over Natural Numbers, and Αm Stands for〈 Α (0), Α (1),..., Α (M− 1)〉, the Initial Segment of Α of Length M. An Immediate Consequence of WC-N is That All Full Functions Are Contin-Uous, and, as a Corollary, That the Continuum is Unsplittable [28]. Note That. [REVIEW] Bulletin of Symbolic Logic 8 (3).
    Direct download  
     
    My bibliography  
     
    Export citation  
  3. Mark van Atten, Dirk van Dalen & And Richard Tieszen (2002). Brouwer and Weyl: The Phenomenology and Mathematics of the Intuitive Continuumt. Philosophia Mathematica 10 (2):203-226.
    Brouwer and Weyl recognized that the intuitive continuum requires a mathematical analysis of a kind that set theory is not able to provide. As an alternative, Brouwer introduced choice sequences. We first describe the features of the intuitive continuum that prompted this development, focusing in particular on the flow of internal time as described in Husserl's phenomenology. Then we look at choice sequences and their logic. Finally, we investigate the differences between Brouwer and Weyl, and argue that Weyl's conception of (...)
    Direct download (6 more)  
     
    My bibliography  
     
    Export citation  
  4. Mark Van Atten, Dirk van Dalen & Richard Tieszen (2002). Brouwer and Weyl: The Phenomenology and Mathematics of the Intuitive Continuumt. Philosophia Mathematica 10 (2):203-226.
    No categories
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  5. Dirk Van Dalen (2000). Brouwer and Fraenkel on Intuitionism. Bulletin of Symbolic Logic 6 (3):284-310.
    Direct download (4 more)  
     
    My bibliography  
     
    Export citation  
  6. Dirk van Dalen (2000). Fraenkel's Book Zehn Vorlesungen Über Die Grundlegung der Mengenlehre,[Fraenkel 1927] Was About to Appear. With the Grundlagenstreit Reaching (in Print!) a Level of Personal Abuse Un-Usual in the Quiet Circles of Pure Mathematics, Brouwer Was Rather Sensitive, Where the Expositions of His Ideas Were Concerned. So When He Thought That. Bulletin of Symbolic Logic 6 (3).
    Direct download  
     
    My bibliography  
     
    Export citation  
  7. Dirk Van Dalen (2000). Heinz-Dieter Ebbinghaus. Zermelo and the Skolem Paradox. Bulletin of Symbolic Logic 1 (2):145-161.
     
    My bibliography  
     
    Export citation  
  8. Dirk van Dalen & Heinz-Dieter Ebbinghaus (2000). Dedicated to Mrs. Gertrud Zermelo on the Occasion of Her 95th Birthday. Bulletin of Symbolic Logic 6 (2).
    Direct download  
     
    My bibliography  
     
    Export citation  
  9. Dirk Van Dalen & Heinz-Dieter Ebbinghaus (2000). Zermelo and the Skolem Paradox. Bulletin of Symbolic Logic 6 (2):145-161.
    Direct download (4 more)  
     
    My bibliography  
     
    Export citation  
  10. Dirk van Dalen (1999). From Brouwerian Counter Examples to the Creating Subject. Studia Logica 62 (2):305-314.
    The original Brouwerian counter examples were algorithmic in nature; after the introduction of choice sequences, Brouwer devised a version which did not depend on algorithms. This is the origin of the creating subject technique. The method allowed stronger refutations of classical principles. Here it is used to show that negative dense subsets of the continuum are indecomposable.
    Direct download (7 more)  
     
    My bibliography  
     
    Export citation  
  11. Dirk van Dalen (1997). How Connected is the Intuitionistic Continuum? Journal of Symbolic Logic 62 (4):1147-1150.
    Direct download (6 more)  
     
    My bibliography  
     
    Export citation  
  12. Dirk van Dalen (1995). Dedicated to Dana Scott on His Sixtieth Birthday. Bulletin of Symbolic Logic 1 (2).
    Direct download  
     
    My bibliography  
     
    Export citation  
  13. Dirk Van Dalen (1995). Hermann Weyl's Intuitionistic Mathematics. Bulletin of Symbolic Logic 1 (2):145-169.
    Direct download (6 more)  
     
    My bibliography  
     
    Export citation  
  14. Dirk van Dalen (1985). Eine Bemerkung zum Aufsatz „Der Fundamentalsatz der Algebra und der Intuitionismus “von H. Kneser. Archive for Mathematical Logic 25 (1):43-44.
    No categories
    Translate to English
    | Direct download  
     
    My bibliography  
     
    Export citation  
  15. Dirk van Dalen (1983). Review: M. P. Fourman, D. S. Scott, C. J. Mulvey, Sheaves and Logic. [REVIEW] Journal of Symbolic Logic 48 (4):1201-1203.
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  16. Dirk van Dalen (1974). Variants of Rescher's Semantics for Preference Logic and Some Completeness Theorems. Studia Logica 33 (2):163-181.
    Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  17. Dirk van Dalen (1969). Review: Elliott Mendelson, Introduction to Mathematical Logic. [REVIEW] Journal of Symbolic Logic 34 (1):110-111.
    Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  18. Dirk van Dalen (1968). Fans Generated by Nondeterministic Automata. Mathematical Logic Quarterly 14 (18):273-278.
    No categories
    Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  19. Dirk Van Dalen (1968). Reducibilities in Intuitionistic Topology. Journal of Symbolic Logic 33 (3):412-417.