Search results for 'F. W. Zimmermann' (try it on Scholar)

4 found
Sort by:
  1. F. W. Zimmermann (1984). W. F. Ryan, C. B. Schmitt (Edd.): Pseudo-Aristotle, The Secret of Secrets. Sources and Influences. (Warburg Institute Surveys, 9.) Pp. Vi+148. London: The Warburg Institute, 1983 (1982 on Title Page). Paper, £18. [REVIEW] The Classical Review 34 (01):139-.score: 2670.0
  2. F. W. Zimmermann (1981). Felix Klein-Franke: Die klassische Antike in der Tradition des Islam. (Erträge der Forschung, 136.) Pp. 181. Darmstadt: Wissenschaftliche Buchgesellschaft, 1980. Paper, DM. 24.50. [REVIEW] The Classical Review 31 (02):329-330.score: 870.0
    Translate to English
    | Direct download (2 more)  
    My bibliography  
    Export citation  
  3. James E. Montgomery (1989). F. W. Zimmermann: Al-Farabi's Commentary and Short Treatise on Aristotle's De Interpretatione. (Classical and Medieval Logic Texts, 3.) Pp. Clii + 287. Oxford: O.U.P. For the British Academy, 1981 (Paperback 1987). [REVIEW] The Classical Review 39 (01):143-144.score: 450.0
  4. E. W. Madison & B. Zimmermann-Huisgen (1986). Combinatorial and Recursive Aspects of the Automorphism Group of the Countable Atomless Boolean Algebra. Journal of Symbolic Logic 51 (2):292-301.score: 51.0
    Given an admissible indexing φ of the countable atomless Boolean algebra B, an automorphism F of B is said to be recursively presented (relative to φ) if there exists a recursive function $p \in \operatorname{Sym}(\omega)$ such that F ⚬ φ = φ ⚬ p. Our key result on recursiveness: Both the subset of $\operatorname{Aut}(\mathscr{B})$ consisting of all those automorphisms which are recursively presented relative to some indexing, and its complement, the set of all "totally nonrecursive" automorphisms, are uncountable. This arises (...)
    Direct download (6 more)  
    My bibliography  
    Export citation