4 found
Sort by:
  1. Newton C. A. Da Costa & Federico Holik (forthcoming). A Formal Framework for the Study of the Notion of Undefined Particle Number in Quantum Mechanics. Synthese:1-19.
    It is usually stated that quantum mechanics presents problems with the identity of particles, the most radical position—supported by E. Schrödinger—asserting that elementary particles are not individuals. But the subject goes deeper, and it is even possible to obtain states with an undefined particle number. In this work we present a set theoretical framework for the description of undefined particle number states in quantum mechanics which provides a precise logical meaning for this notion. This construction goes in the line of (...)
    No categories
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  2. Federico Holik, Christian de Ronde & Wim Christiaens (2013). A New Conceptual Scheme for the Interpretation of the Improper Mixtures in Quantum Mechanics. Scientiae Studia 11 (1):101-118.
    En este artículo, analizamos el significado de las matrices densidad en el formalismo de la mecánica cuántica. Discutimos el problema de los "sistemas cuánticos compuestos" en la lógica cuántica así como también la interpretación de las mezclas impropias. Tomando en cuenta el desarrollo de la lógica cuántica convexa, presentamos un análisis de la estructura formal de la teoría que, argumentaremos, debe ser considerado a la hora de desarrollar un nuevo esquema conceptual para la interpretación de las mezclas cuánticas. In this (...)
    No categories
    Direct download (7 more)  
     
    My bibliography  
     
    Export citation  
  3. Graciela Domenech, Federico Holik & Décio Krause (2008). Q-Spaces and the Foundations of Quantum Mechanics. Foundations of Physics 38 (11):969-994.
    Our aim in this paper is to take quite seriously Heinz Post’s claim that the non-individuality and the indiscernibility of quantum objects should be introduced right at the start, and not made a posteriori by introducing symmetry conditions. Using a different mathematical framework, namely, quasi-set theory, we avoid working within a label-tensor-product-vector-space-formalism, to use Redhead and Teller’s words, and get a more intuitive way of dealing with the formalism of quantum mechanics, although the underlying logic should be modified. We build (...)
    Direct download (5 more)  
     
    My bibliography  
     
    Export citation  
  4. Graciela Domenech & Federico Holik (2007). A Discussion on Particle Number and Quantum Indistinguishability. Foundations of Physics 37 (6):855-878.
    The concept of individuality in quantum mechanics shows radical differences from the concept of individuality in classical physics, as E. Schrödinger pointed out in the early steps of the theory. Regarding this fact, some authors suggested that quantum mechanics does not possess its own language, and therefore, quantum indistinguishability is not incorporated in the theory from the beginning. Nevertheless, it is possible to represent the idea of quantum indistinguishability with a first-order language using quasiset theory (Q). In this work, we (...)
    Direct download (5 more)  
     
    My bibliography  
     
    Export citation