12 found
Sort by:
  1. Hourya Benis Sinaceur (2014). Facets and Levels of Mathematical Abstraction. Philosophia Scientiæ 18 (1):81-112.
    Mathematical abstraction is the process of considering and ma­nipulating operations, rules, methods and concepts divested from their refe­rence to real world phenomena and circumstances, and also deprived from the content connected to particular applications. There is no one single way of per­forming mathematical abstraction. The term “abstraction” does not name a unique procedure but a general process, which goes many ways that are mostly simultaneous and intertwined; in particular, the process does not amount only to logical subsumption. I will consider (...)
    No categories
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  2. Hourya Sinaceur (2002). Modernity in Mathematics: Some Epistemological Invariants. Revue d'Histoire des Sciences 55 (1):83-100.
    No categories
     
    My bibliography  
     
    Export citation  
  3. Hourya Sinaceur (2001). Alfred Tarski: Semantic Shift, Heuristic Shift in Metamathematics. Synthese 126 (1-2):49 - 65.
    Direct download (5 more)  
     
    My bibliography  
     
    Export citation  
  4. Hourya Sinaceur (2000). Address at the Princeton University Bicentennial Conference on Problems of Mathematics (December 17–19, 1946), by Alfred Tarski. [REVIEW] Bulletin of Symbolic Logic 6 (1):1-44.
    This article presents Tarski's Address at the Princeton Bicentennial Conference on Problems of Mathematics, together with a separate summary. Two accounts of the discussion which followed are also included. The central topic of the Address and of the discussion is decision problems. The introductory note gives information about the Conference, about the background of the subjects discussed in the Address, and about subsequent developments to these subjects.
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  5. Hourya Sinaceur (2000). Y-a-T-Il Une Tolérance Dans la Science? Philosophica 66.
    No categories
    Direct download  
     
    My bibliography  
     
    Export citation  
  6. Alfred Tarski & Hourya Sinaceur (2000). Address at the Princeton University Bicentennial Conference on Problems of Mathematics (December 17-19, 1946). Bulletin of Symbolic Logic 6 (1):1-44.
    This article presents Tarski's Address at the Princeton Bicentennial Conference on Problems of Mathematics, together with a separate summary. Two accounts of the discussion which followed are also included. The central topic of the Address and of the discussion is decision problems. The introductory note gives information about the Conference, about the background of the subjects discussed in the Address, and about subsequent developments to these subjects.
    Direct download (5 more)  
     
    My bibliography  
     
    Export citation  
  7. Hourya Sinaceur (1999). Réalisme mathématique, réalisme logique chez Bolzano. Revue d'Histoire des Sciences 52 (3-4):457-477.
    No categories
    Translate to English
    |
     
    My bibliography  
     
    Export citation  
  8. Bernard Bolanzo, Hourya Sinaceur, Bernard Bolzano & Centre National des Lettres (1993). Les Paradoxes de L'Infini.
    No categories
    Translate to English
    |
     
    My bibliography  
     
    Export citation  
  9. Hourya Sinaceur (1993). Du formalisme à la constructivité: le finitisme. Revue Internationale de Philosophie 47 (186):251-283.
    No categories
    Translate to English
    |
     
    My bibliography  
     
    Export citation  
  10. J. Salanskis & Hourya Sinaceur (1992). Le Labyrinthe du Continu Colloque de Cerisy.
    No categories
    Translate to English
    |
     
    My bibliography  
     
    Export citation  
  11. Hourya Sinaceur (1991). Corps Et Modèles: Essai Sur L’Histoire de L’Algèbre Réelle. Vrin.
    Ce livre résulte de recherches sur les transformations récentes d’un concept aussi vieux que la mathématique elle-même, celui de nombre réel. De l’analyse classique à l’algèbre « moderne » et de celle-ci à la théorie des modèles, on trace ici le parcours singulier d’une alliance réussie des mathématiques et de la logique. La structure algébrique de corps réel clos et la théorie élémentaire de cette structure conduisent à déplacer la frontière du champ d’intervention des concepts analytiques dans de nombreux problèmes.S’il (...)
    No categories
    Translate to English
    | Direct download  
     
    My bibliography  
     
    Export citation  
  12. Hourya Sinaceur (1975). Bolzano Est-Il le Précurseur de Frege? Archiv für Geschichte der Philosophie 57 (3):286-303.
    Direct download (3 more)  
     
    My bibliography  
     
    Export citation