Search results for 'Intuitionistic mathematics Congresses' (try it on Scholar)

1000+ found
Order:
  1. Fred Richman (ed.) (1981). Constructive Mathematics: Proceedings of the New Mexico State University Conference Held at Las Cruces, New Mexico, August 11-15, 1980. [REVIEW] Springer-Verlag.
     
    Export citation  
     
    My bibliography  
  2.  2
    Mohammad Ardeshir & Rasoul Ramezanian (2009). Decidability and Specker Sequences in Intuitionistic Mathematics. Mathematical Logic Quarterly 55 (6):637-648.
    A bounded monotone sequence of reals without a limit is called a Specker sequence. In Russian constructive analysis, Church's Thesis permits the existence of a Specker sequence. In intuitionistic mathematics, Brouwer's Continuity Principle implies it is false that every bounded monotone sequence of real numbers has a limit. We claim that the existence of Specker sequences crucially depends on the properties of intuitionistic decidable sets. We propose a schema about intuitionistic decidability that asserts “there exists an (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  3. Stephen Cole Kleene (1965). The Foundations of Intuitionistic Mathematics. Amsterdam, North-Holland Pub. Co..
     
    Export citation  
     
    My bibliography   23 citations  
  4.  9
    A. S. Troelstra (1977). Choice Sequences: A Chapter of Intuitionistic Mathematics. Clarendon Press.
  5. Michael A. E. Dummett (1974). Intuitionistic Mathematics and Logic. Mathematical Institute.
  6. A. S. Troelstra (1975). Axioms for Intuitionistic Mathematics Incompatible with Classical Logic. Mathematisch Instituut.
     
    Export citation  
     
    My bibliography  
  7.  7
    Takeshi Yamazaki (2001). Reverse Mathematics and Completeness Theorems for Intuitionistic Logic. Notre Dame Journal of Formal Logic 42 (3):143-148.
    In this paper, we investigate the logical strength of completeness theorems for intuitionistic logic along the program of reverse mathematics. Among others we show that is equivalent over to the strong completeness theorem for intuitionistic logic: any countable theory of intuitionistic predicate logic can be characterized by a single Kripke model.
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography  
  8.  10
    A. Kino, John Myhill & Richard Eugene Vesley (eds.) (1970). Intuitionism and Proof Theory. Amsterdam,North-Holland Pub. Co..
    Our first aim is to make the study of informal notions of proof plausible. Put differently, since the raison d'étre of anything like existing proof theory seems to rest on such notions, the aim is nothing else but to make a case for proof theory; ...
    Direct download  
     
    Export citation  
     
    My bibliography   5 citations  
  9. L. E. J. Brouwer, A. S. Troelstra & D. van Dalen (eds.) (1982). The L.E.J. Brouwer Centenary Symposium: Proceedings of the Conference Held in Noordwijkerhout, 8-13 June 1981. Sole Distributors for the U.S.A. And Canada, Elsevier Science Pub. Co..
    No categories
     
    Export citation  
     
    My bibliography  
  10.  41
    Neil Tennant (1994). Intuitionistic Mathematics Does Not Needex Falso Quodlibet. Topoi 13 (2):127-133.
    We define a system IR of first-order intuitionistic relevant logic. We show that intuitionistic mathematics (on the assumption that it is consistent) can be relevantized, by virtue of the following metatheorem: any intuitionistic proof of A from a setX of premisses can be converted into a proof in IR of eitherA or absurdity from some subset ofX. Thus IR establishes the same inconsistencies and theorems as intuitionistic logic, and allows one to prove every intuitionistic (...)
    Direct download (6 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  11.  44
    Wenceslao J. Gonzalez (1991). Intuitionistic Mathematics and Wittgenstein. History and Philosophy of Logic 12 (2):167-183.
    The relation between Wittgenstein's philosophy of mathematics and mathematical Intuitionism has raised a considerable debate. My attempt is to analyse if there is a commitment in Wittgenstein to themes characteristic of the intuitionist movement in Mathematics and if that commitment is one important strain that runs through his Remarks on the foundations of mathematics. The intuitionistic themes to analyse in his philosophy of mathematics are: firstly, his attacks on the unrestricted use of the Law of (...)
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  12.  15
    Dag Westerståhl (2004). Perspectives on the Dispute Between Intuitionistic and Classical Mathematics. In Christer Svennerlind (ed.), Ursus Philosophicus. Essays dedicated to Björn Haglund on his sixtieth birthday. Philosophical Communications
    It is not unreasonable to think that the dispute between classical and intuitionistic mathematics might be unresolvable or 'faultless', in the sense of there being no objective way to settle it. If so, we would have a pretty case of relativism. In this note I argue, however, that there is in fact not even disagreement in any interesting sense, let alone a faultless one, in spite of appearances and claims to the contrary. A position I call classical pluralism (...)
    Translate
      Direct download  
     
    Export citation  
     
    My bibliography  
  13.  44
    Enrico Martino & Gabriele Usberti (1994). Temporal and Atemporal Truth in Intuitionistic Mathematics. Topoi 13 (2):83-92.
    In section 1 we argue that the adoption of a tenseless notion of truth entails a realistic view of propositions and provability. This view, in turn, opens the way to the intelligibility of theclassical meaning of the logical constants, and consequently is incompatible with the antirealism of orthodox intuitionism. In section 2 we show how what we call the potential intuitionistic meaning of the logical constants can be defined, on the one hand, by means of the notion of atemporal (...)
    Direct download (6 more)  
     
    Export citation  
     
    My bibliography   3 citations  
  14.  32
    Dirk Van Dalen (1995). Hermann Weyl's Intuitionistic Mathematics. Bulletin of Symbolic Logic 1 (2):145-169.
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  15.  20
    Dirk Van Dalen (1995). Hermann Weyl's Intuitionistic Mathematics. Bulletin of Symbolic Logic 1 (2):145 - 169.
  16.  29
    A. Heyting (1955). G. F. C. Griss and His Negationless Intuitionistic Mathematics. Synthese 9 (1):91 - 96.
  17.  5
    J. M. P. (1965). The Foundations of Intuitionistic Mathematics. [REVIEW] Review of Metaphysics 19 (1):154-155.
    Direct download  
     
    Export citation  
     
    My bibliography  
  18. R. E. Vesley (1967). Review: Clifford Spector, Provably Recursive Functionals of Analysis: A Consistency Proof of Analysis by an Extension of Principles Formulated in Current Intuitionistic Mathematics. [REVIEW] Journal of Symbolic Logic 32 (1):128-128.
     
    Export citation  
     
    My bibliography  
  19.  8
    P. J. M. (1965). The Foundations of Intuitionistic Mathematics. Review of Metaphysics 19 (1):154-155.
    Direct download  
     
    Export citation  
     
    My bibliography  
  20. S. C. Kleene (1953). Recursive Functions and Intuitionistic Mathematics. Journal of Symbolic Logic 18 (2):181-182.
    Direct download  
     
    Export citation  
     
    My bibliography   3 citations  
  21.  1
    E. W. Beth (1948). Semantical Considerations on Intuitionistic Mathematics. Journal of Symbolic Logic 13 (3):173-173.
    Direct download  
     
    Export citation  
     
    My bibliography   1 citation  
  22.  2
    S. C. Kleene (1948). Review: E. W. Beth, Semantical Considerations on Intuitionistic Mathematics. [REVIEW] Journal of Symbolic Logic 13 (3):173-173.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  23.  4
    Richard Vesley (1979). Review: A. S. Troelstra, Choice Sequences. A Chapter of Intuitionistic Mathematics. [REVIEW] Journal of Symbolic Logic 44 (2):275-276.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  24.  3
    David Nelson (1949). Review: J. J. De Iongh, Restricted Forms of Intuitionistic Mathematics. [REVIEW] Journal of Symbolic Logic 14 (3):183-184.
  25. S. C. Kleene (1965). Classical Extensions of Intuitionistic Mathematics. In Yehoshua Bar-Hillel (ed.), Logic, Methodology and Philosophy of Science. Amsterdam, North-Holland Pub. Co. 2--31.
     
    Export citation  
     
    My bibliography   1 citation  
  26.  1
    A. Heyting (1940). Intuïtionistic Mathematics. Journal of Symbolic Logic 5 (2):73-74.
    Direct download  
     
    Export citation  
     
    My bibliography  
  27.  1
    A. Heyting (1937). The Development of Intuitionistic Mathematics. Journal of Symbolic Logic 2 (2):89-89.
    Direct download  
     
    Export citation  
     
    My bibliography  
  28.  2
    P. G. J. Vredenduin (1956). Review: A. Heyting, G. F. C. Griss and His Negationaless Intuitionistic Mathematics. [REVIEW] Journal of Symbolic Logic 21 (1):91-91.
    Direct download  
     
    Export citation  
     
    My bibliography  
  29.  2
    Evert W. Beth (1947). Review: L. E. J. Brouwer, Directives of Intuitionistic Mathematics. [REVIEW] Journal of Symbolic Logic 12 (4):136-136.
    Direct download  
     
    Export citation  
     
    My bibliography  
  30.  1
    Alonzo Church (1937). Review: A. Heyting, The Development of Intuitionistic Mathematics. [REVIEW] Journal of Symbolic Logic 2 (2):89-89.
    Direct download  
     
    Export citation  
     
    My bibliography  
  31.  2
    P. G. J. Vredenduin (1954). Review: G. F. C. Griss, Negationless Intuitionistic Mathematics II, III, IV. [REVIEW] Journal of Symbolic Logic 19 (4):296-297.
    Direct download  
     
    Export citation  
     
    My bibliography  
  32.  1
    Evert Beth (1940). Review: A. Heyting, Intuitionistic Mathematics. [REVIEW] Journal of Symbolic Logic 5 (2):73-74.
    Direct download  
     
    Export citation  
     
    My bibliography  
  33.  1
    Andrzej Mostowski (1953). Review: S. C. Kleene, Recursive Functions and Intuitionistic Mathematics. [REVIEW] Journal of Symbolic Logic 18 (2):181-182.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  34.  1
    Evert W. Beth (1946). Review: G. F. C. Griss, Negation-Free Intuitionistic Mathematics. [REVIEW] Journal of Symbolic Logic 11 (1):24-24.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  35. Evert W. Beth (1947). Review: G. F. C. Griss, Negationless Intuitionistic Mathematics. [REVIEW] Journal of Symbolic Logic 12 (2):62-62.
    Direct download  
     
    Export citation  
     
    My bibliography  
  36. Alonzo Church (1942). Chandrasekharan K.. The Logic of Intuitionistic Mathematics. The Mathematics Student , Vol. 9 No. 4 , Pp. 143–154. Journal of Symbolic Logic 7 (4):171.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  37. Alonzo Church (1948). Griss G. F. C.. Negationless Intuitionistic Mathematics. Indagationes Mathematicae, Vol. 8 , Pp. 675–681. [Same as XII 62.]. [REVIEW] Journal of Symbolic Logic 13 (3):174.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  38. Alonzo Church (1948). Review: G. F. C. Griss, Negationless Intuitionistic Mathematics; J. Ridder, Ueber den Aussagen-und den Engeren Pradikatenkalkul; L. E. J. Brouwer, Richtlijnen der Intuitionistische Wiskunde. [REVIEW] Journal of Symbolic Logic 13 (3):174-174.
    Translate
      Direct download  
     
    Export citation  
     
    My bibliography  
  39. Alonzo Church (1942). Review: K. Chandrasekharan, The Logic of Intuitionistic Mathematics. [REVIEW] Journal of Symbolic Logic 7 (4):171-171.
    Direct download  
     
    Export citation  
     
    My bibliography  
  40. R. E. Grandy (1983). A.S. TROELSTRA "Choice Sequences. A Chapter of Intuitionistic Mathematics". [REVIEW] History and Philosophy of Logic 4 (2):241.
     
    Export citation  
     
    My bibliography  
  41. G. F. C. Griss (1955). Logic of Negationless Intuitionistic Mathematics. Journal of Symbolic Logic 20 (1):67-68.
    Direct download  
     
    Export citation  
     
    My bibliography  
  42. G. F. C. Griss (1947). Negationless Intuitionistic Mathematics. Journal of Symbolic Logic 12 (2):62-62.
    Direct download  
     
    Export citation  
     
    My bibliography  
  43. G. F. C. Griss (1954). Negationless Intuitionistic Mathematics II, III, IV. Journal of Symbolic Logic 19 (4):296-297.
    Direct download  
     
    Export citation  
     
    My bibliography  
  44. S. C. Kleene (1948). Beth E. W.. Semantical Considerations on Intuitionistic Mathematics. Koninklijke Nederlandsche Akademie van Wetenschappen, Proceedings of the Section of Sciences, Vol. 50 , Pp. 1246–1251, and Ibid., Pp. 572–577. [REVIEW] Journal of Symbolic Logic 13 (3):173.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  45. Andrzej Mostowski (1953). Kleene S. C.. Recursive Functions and Intuitionistic Mathematics. Proceedings of the International Congress of Mathematicians, Cambridge, Massachusetts, U.S.A., August 30-September 6, 1950, American Mathematical Society, Providence 1952, Vol. I, Pp. 679–685. [REVIEW] Journal of Symbolic Logic 18 (2):181-182.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  46. David Nelson (1949). De Iongh J. J.. Restricted Forms of Intuitionistic Mathematics. Actes du Xme Congrès International de Philosophie —Proceedings of the Tenth International Congress of Philosophy , North-Holland Publishing Company, Amsterdam 1949, Pp. 744–748. [REVIEW] Journal of Symbolic Logic 14 (3):183-184.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  47. Mary Tiles (1978). Choice Sequences: A Chapter of Intuitionistic Mathematics. Philosophical Books 19 (2):77-80.
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  48. R. E. Vesley (1967). Spector Clifford. Provably Recursive Functionals of Analysis: A Consistency Proof of Analysis by an Extension of Principles Formulated in Current Intuitionistic Mathematics. Recursive Function Theory, Proceedings of Symposia in Pure Mathematics, Vol. 5, American Mathematical Society, Providence 1962, Pp. 1–27. [REVIEW] Journal of Symbolic Logic 32 (1):128.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  49. Richard Vesley (1979). Troelstra A. S.. Choice Sequences. A Chapter of Intuitionistic Mathematics. Oxford Logic Guides. Clarendon Press, Oxford 1977, Ix + 170 Pp. [REVIEW] Journal of Symbolic Logic 44 (2):275-276.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  50. P. G. J. Vredenduin (1954). Griss G. F. C.. Negationless Intuitionistic Mathematics II, III, IV. Koninklijke Nederlandse Akademie van Wetenschappen, Proceedings of the Section of Sciences, Vol. 53 , Pp. 456–463, and Series A, Vol. 54 , Pp. 193–199, 452–471; Also Indagationes Mathematicae, Vol. 12 , Pp. 108–115, and Vol. 13 , Pp. 193–199, 452–471. [REVIEW] Journal of Symbolic Logic 19 (4):296-297.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
1 — 50 / 1000