## Works by J. Cichon ( view other items matching J. Cichon, view all matches ) Disambiguations: J. Cichoń [4]Jacek Cichoń [3]

6 found
Sort by:
1. Jacek Cichoń, Adam Krawczyk, Barbara Majcher-Iwanow & Bogdan Weglorz (2000). Dualization of the Van Douwen Diagram. Journal of Symbolic Logic 65 (2):959-968.
We make a more systematic study of the van Douwen diagram for cardinal coefficients related to combinatorial properties of partitions of natural numbers.

My bibliography

Export citation
2. J. Cichon, A. Roslanowski, J. Steprans & B. Weglorz (1993). Combinatorial Properties of the Ideal B. Journal of Symbolic Logic 58 (1).

My bibliography

Export citation
3. J. Cichoń, M. Morayne, J. Pawlikowski & S. Solecki (1991). Decomposing Baire Functions. Journal of Symbolic Logic 56 (4):1273-1283.
We discuss in the paper the following problem: Given a function in a given Baire class, into "how many" (in terms of cardinal numbers) functions of lower classes can it be decomposed? The decomposition is understood here in the sense of the set-theoretical union.

My bibliography

Export citation
4. J. Cichon, M. Morayne, J. Pawlikowski & S. Solecki (1991). Decomposing Baire Functions. Journal of Symbolic Logic 56 (4).

My bibliography

Export citation
5. Jacek Cichoń & Janusz Pawlikowski (1986). On Ideals of Subsets of the Plane and on Cohen Reals. Journal of Symbolic Logic 51 (3):560-569.
Let J be any proper ideal of subsets of the real line R which contains all finite subsets of R. We define an ideal J * ∣B as follows: X ∈ J * ∣B if there exists a Borel set $B \subset R \times R$ such that $X \subset B$ and for any x ∈ R we have $\{y \in R: \langle x,y\rangle \in B\} \in \mathscr{J}$ . We show that there exists a family $\mathscr{A} \subset \mathscr{J}^\ast\mid\mathscr{B}$ of power ω (...)