31 found
Order:
  1.  11
    John N. Crossley (1966). Constructive Order Types, II. Journal of Symbolic Logic 31 (4):525-538.
    Direct download (6 more)  
     
    Export citation  
     
    My bibliography  
  2.  35
    John N. Crossley (ed.) (1972/1990). What is Mathematical Logic? Dover Publications.
    This lively introduction to mathematical logic, easily accessible to non-mathematicians, offers an historical survey, coverage of predicate calculus, model theory, Godel’s theorems, computability and recursivefunctions, consistency and independence in axiomatic set theory, and much more. Suggestions for Further Reading. Diagrams.
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   2 citations  
  3.  30
    John N. Crossley & Lloyd Humberstone (1981). Meeting of the Association for Symbolic Logic: Melbourne, Australia 1979. Journal of Symbolic Logic 46 (2):424-426.
  4.  2
    John N. Crossley, Alfred B. Manaster & Michael F. Moses (1986). Recursive Categoricity and Recursive Stability. Annals of Pure and Applied Logic 31 (2):191-204.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  5.  1
    R. O. Gandy & John N. Crossley (1970). Computable Functionals of Finite Type I. Journal of Symbolic Logic 35 (1):157-158.
    Direct download  
     
    Export citation  
     
    My bibliography   1 citation  
  6.  5
    John N. Crossley (1991). [Omnibus Review]. Journal of Symbolic Logic 56 (3):1089-1090.
    Reviewed Works:Andrew Hodges, Rolf Herken, Alan Turing and the Turing Machine.Stephen C. Kleene, Turing's Analysis of Computability, and Major Applications of it.Robin Gandy, The Confluence of Ideas in 1936.Solomon Feferman, Turing in the Land of O.Martin Davis, Esther R. Phillips, Mathematical Logic and the Origin of Modern Computers.
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  7.  8
    John N. Crossley (1982). The Given. Studia Logica 41 (2-3):131 - 139.
    The paper presents a brief survey of recent work by Metakides, Nerode and others in the area of effective algebra and makes some comments on the relation between formal presentations, characterizations, etc. of sets and of algebraic structures and their practical presentations.
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  8.  16
    Frank A. Bäuerle, David Albrecht, John N. Crossley & John S. Jeavons (1998). Curry-Howard Terms for Linear Logic. Studia Logica 61 (2):223-235.
    In this paper we 1. provide a natural deduction system for full first-order linear logic, 2. introduce Curry-Howard-style terms for this version of linear logic, 3. extend the notion of substitution of Curry-Howard terms for term variables, 4. define the reduction rules for the Curry-Howard terms and 5. outline a proof of the strong normalization for the full system of linear logic using a development of Girard's candidates for reducibility, thereby providing an alternative to Girard's proof using proof-nets.
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography  
  9.  1
    John N. Crossley (1989). Review: Dirk van Dalen, Algorithms and Decision Problems: A Crash Course in Recursion Theory. [REVIEW] Journal of Symbolic Logic 54 (3):1094-1095.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  10.  15
    John N. Crossley (2009). Indian Philosophy and Philosophy of Science (Review). Philosophy East and West 59 (4):pp. 565-567.
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography  
  11.  2
    David Albrecht, Frank A. Bäuerle, John N. Crossley & John S. Jeavons (1998). Curry-Howard Terms for Linear Logic. Studia Logica 61 (2):223-235.
    In this paper we 1. provide a natural deduction system for full first-order linear logic, 2. introduce Curry- Howard -style terms for this version of linear logic, 3. extend the notion of substitution of Curry- Howard terms for term variables, 4. define the reduction rules for the Curry- Howard terms and 5. outline a proof of the strong normalization for the full system of linear logic using a development of Girard's candidates for reducibility, thereby providing an alternative to Girard's proof (...)
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography  
  12.  3
    John N. Crossley, Paul Lorenzen & Frederick J. Crosson (1967). Formal Logic. Philosophical Quarterly 17 (66):83.
  13. C. E. M. Yates & John N. Crossley (1970). Recursively Enumerable Degrees and the Degrees Less Than 0. Journal of Symbolic Logic 35 (4):589-589.
    Direct download  
     
    Export citation  
     
    My bibliography   1 citation  
  14.  2
    John N. Crossley & Philip J. Scott (1989). Completeness Proofs for Propositional Logic with Polynomial-Time Connectives. Annals of Pure and Applied Logic 44 (1-2):39-52.
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  15.  1
    John N. Crossley (2005). Roshdi Rashed, Les mathématiques infinitésimales du IXe au Xle siècle, 4: lbn al-Haytham, méthodes géométriques, transformations ponctuelles et philosophie des mathématiques. London: Al-Furqān Islamic Heritage Foundation, 2002. Pp. xiii, 1064, vii; many black-and-white figures. [REVIEW] Speculum 80 (3):955-957.
    No categories
    Translate
      Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  16.  1
    John N. Crossley (2008). HLL Busard, Campanus of Novara and Euclid's “Elements.”(Boethius, 51, 1 and 2.) Wiesbaden: Franz Steiner, 2005. 1: Pp. Vii, 1–530; Many Diagrams. 2: Pp. Iv, 531–768; Diagrams.€ 115. [REVIEW] Speculum 83 (1):181-182.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  17.  1
    John N. Crossley & J. B. Remmel (1992). Cancellation Laws for Polynomial-Time P-Isolated Sets. Annals of Pure and Applied Logic 56 (1-3):147-172.
    A universal Horn sentence in the language of polynomial-time computable combinatorial functions of natural numbers is true for the natural numbers if, and only if, it is true for PETs of p-time p-isolated sets with functions induced by fully p-time combinatorial operators.
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  18.  1
    John N. Crossley (1971). Review: Alfred B. Manaster, Rich Co-Ordinals, Addition Isomorphisms, and RETs. [REVIEW] Journal of Symbolic Logic 36 (2):342-342.
    Direct download  
     
    Export citation  
     
    My bibliography  
  19. John N. Crossley (ed.) (1975). Algebra and Logic: Papers From the 1974 Summer Research Institute of the Australian Mathematical Society, Monash University, Australia. Springer-Verlag.
     
    Export citation  
     
    My bibliography  
  20. John N. Crossley (1969). Constructive Order Types. London, North-Holland Pub. Co..
     
    Export citation  
     
    My bibliography  
  21. John N. Crossley & Michael A. E. Dummett (eds.) (1965). Formal Systems and Recursive Functions. Amsterdam, North-Holland Pub. Co..
    No categories
     
    Export citation  
     
    My bibliography  
  22. John N. Crossley (2001). Handbook of Recursive Mathematics, Volume 2, Recursive Algebra, Analysis and Combinatorics, Edited by Ershov Yu. L., Goncharov SS, Nerode A., and Remmel JB, with Marek VW, Studies in Logic and the Foundations of Mathematics, Vol. 139, Elsevier, Amsterdam Etc. 1998, Xlvi+ Pp. 621–1372. [REVIEW] Bulletin of Symbolic Logic 7 (1):69-71.
    Direct download  
     
    Export citation  
     
    My bibliography  
  23. John N. Crossley (1996). KreisePs Effectiveness. In Piergiorgio Odifreddi (ed.), Kreiseliana. About and Around Georg Kreisel. A K Peters 33.
    No categories
    Translate
     
     
    Export citation  
     
    My bibliography  
  24. John N. Crossley (1970). Non-Uniqueness at Ω 2 in Kleene's O. Journal of Symbolic Logic 35 (2):336-336.
    Direct download  
     
    Export citation  
     
    My bibliography  
  25. John N. Crossley (1972). Recursive Equivalence: A Survey. Journal of Symbolic Logic 37 (2):406-407.
    Direct download  
     
    Export citation  
     
    My bibliography  
  26. John N. Crossley (2001). Review: Yu. L. Ershov, S. S. Goncharov, A. Nerode, J. B. Remmel, V. W. Marek, Handbook of Recursive Mathematics. Volume 2, Recursive Algebra, Analysis and Combinatorics. [REVIEW] Bulletin of Symbolic Logic 7 (1):69-71.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  27. John N. Crossley (ed.) (1967). Sets, Models and Recursion Theory. Amsterdam, North-Holland Pub. Co..
    No categories
     
    Export citation  
     
    My bibliography  
  28. John N. Crossley & Logic Colloquium (1967). Sets, Models and Recursion Theory Proceedings of the Summer School in Mathematical Logic and Tenth Logic Colloquium, Leicester, August-September 1965. North-Holland.
     
    Export citation  
     
    My bibliography  
  29. Dominic Hyde, Rehabilitating Russell, John S. Jeavons & John N. Crossley (1992). Table Des Matieres du Vol. 137-138. Logique Et Analyse 35:206.
     
    Export citation  
     
    My bibliography  
  30. John S. Jeavons & John N. Crossley (1992). A Logic-Based Modelling of Prolog Resolution Sequences. Logique Et Analyse 35 (138):189-205.
     
    Export citation  
     
    My bibliography  
  31. R. B. Jensen & John N. Crossley (1970). Concrete Models of Set Theory. Journal of Symbolic Logic 35 (3):472-473.
    Direct download  
     
    Export citation  
     
    My bibliography