58 found
Order:
  1.  38
    Thomas L. Griffiths, Nick Chater, Charles Kemp, Amy Perfors & Joshua B. Tenenbaum (2010). Probabilistic Models of Cognition: Exploring Representations and Inductive Biases. Trends in Cognitive Sciences 14 (8):357-364.
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   50 citations  
  2.  35
    Joshua B. Tenenbaum, Thomas L. Griffiths & Charles Kemp (2006). Theory-Based Bayesian Models of Inductive Learning and Reasoning. Trends in Cognitive Sciences 10 (7):309-318.
  3.  9
    Amy Perfors, Joshua B. Tenenbaum & Terry Regier (2011). The Learnability of Abstract Syntactic Principles. Cognition 118 (3):306-338.
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography   22 citations  
  4. Amy Perfors, Joshua B. Tenenbaum, Thomas L. Griffiths & Fei Xu (2011). A Tutorial Introduction to Bayesian Models of Cognitive Development. Cognition 120 (3):302-321.
  5.  13
    Chris L. Baker, Rebecca Saxe & Joshua B. Tenenbaum (2009). Action Understanding as Inverse Planning. Cognition 113 (3):329-349.
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   24 citations  
  6.  20
    Edward Vul, Noah Goodman, Thomas L. Griffiths & Joshua B. Tenenbaum (2014). One and Done? Optimal Decisions From Very Few Samples. Cognitive Science 38 (4):599-637.
    In many learning or inference tasks human behavior approximates that of a Bayesian ideal observer, suggesting that, at some level, cognition can be described as Bayesian inference. However, a number of findings have highlighted an intriguing mismatch between human behavior and standard assumptions about optimality: People often appear to make decisions based on just one or a few samples from the appropriate posterior probability distribution, rather than using the full distribution. Although sampling-based approximations are a common way to implement Bayesian (...)
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography   9 citations  
  7.  25
    Joshua B. Tenenbaum & Thomas L. Griffiths (2001). Generalization, Similarity, and Bayesian Inference. Behavioral and Brain Sciences 24 (4):629-640.
    Shepard has argued that a universal law should govern generalization across different domains of perception and cognition, as well as across organisms from different species or even different planets. Starting with some basic assumptions about natural kinds, he derived an exponential decay function as the form of the universal generalization gradient, which accords strikingly well with a wide range of empirical data. However, his original formulation applied only to the ideal case of generalization from a single encountered stimulus to a (...)
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography   45 citations  
  8.  13
    Noah D. Goodman, Joshua B. Tenenbaum, Jacob Feldman & Thomas L. Griffiths (2008). A Rational Analysis of Rule‐Based Concept Learning. Cognitive Science 32 (1):108-154.
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography   22 citations  
  9.  4
    Mark Steyvers, Joshua B. Tenenbaum, Eric‐Jan Wagenmakers & Ben Blum (2003). Inferring Causal Networks From Observations and Interventions. Cognitive Science 27 (3):453-489.
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography   32 citations  
  10.  4
    Mark Steyvers & Joshua B. Tenenbaum (2005). The Large‐Scale Structure of Semantic Networks: Statistical Analyses and a Model of Semantic Growth. Cognitive Science 29 (1):41-78.
    Direct download (6 more)  
     
    Export citation  
     
    My bibliography   26 citations  
  11.  7
    Michael C. Frank, Sharon Goldwater, Thomas L. Griffiths & Joshua B. Tenenbaum (2010). Modeling Human Performance in Statistical Word Segmentation. Cognition 117 (2):107-125.
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   13 citations  
  12.  7
    Laura E. Schulz, Noah D. Goodman, Joshua B. Tenenbaum & Adrianna C. Jenkins (2008). Going Beyond the Evidence: Abstract Laws and Preschoolers’ Responses to Anomalous Data. Cognition 109 (2):211-223.
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography   13 citations  
  13.  67
    Leah Henderson, Noah D. Goodman, Joshua B. Tenenbaum & James F. Woodward (2010). The Structure and Dynamics of Scientific Theories: A Hierarchical Bayesian Perspective. Philosophy of Science 77 (2):172-200.
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography   9 citations  
  14.  37
    Charles Kemp, Noah D. Goodman & Joshua B. Tenenbaum (2010). Learning to Learn Causal Models. Cognitive Science 34 (7):1185-1243.
    Learning to understand a single causal system can be an achievement, but humans must learn about multiple causal systems over the course of a lifetime. We present a hierarchical Bayesian framework that helps to explain how learning about several causal systems can accelerate learning about systems that are subsequently encountered. Given experience with a set of objects, our framework learns a causal model for each object and a causal schema that captures commonalities among these causal models. The schema organizes the (...)
    Direct download (9 more)  
     
    Export citation  
     
    My bibliography   8 citations  
  15.  13
    Michael C. Frank & Joshua B. Tenenbaum (2011). Three Ideal Observer Models for Rule Learning in Simple Languages. Cognition 120 (3):360-371.
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   6 citations  
  16.  12
    Charles Kemp, Joshua B. Tenenbaum, Sourabh Niyogi & Thomas L. Griffiths (2010). A Probabilistic Model of Theory Formation. Cognition 114 (2):165-196.
  17.  11
    Nick Chater, Noah Goodman, Thomas L. Griffiths, Charles Kemp, Mike Oaksford & Joshua B. Tenenbaum (2011). The Imaginary Fundamentalists: The Unshocking Truth About Bayesian Cognitive Science. Behavioral and Brain Sciences 34 (4):194-196.
    If Bayesian Fundamentalism existed, Jones & Love's (J&L's) arguments would provide a necessary corrective. But it does not. Bayesian cognitive science is deeply concerned with characterizing algorithms and representations, and, ultimately, implementations in neural circuits; it pays close attention to environmental structure and the constraints of behavioral data, when available; and it rigorously compares multiple models, both within and across papers. J&L's recommendation of Bayesian Enlightenment corresponds to past, present, and, we hope, future practice in Bayesian cognitive science.
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography   5 citations  
  18.  17
    Joshua B. Tenenbaum, Thomas L. Griffiths & Sourabh Niyogi (2007). Intuitive Theories as Grammars for Causal Inference. In Alison Gopnik & Laura Schulz (eds.), Causal Learning: Psychology, Philosophy, and Computation. Oxford University Press 301--322.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography   8 citations  
  19.  29
    Thomas L. Griffiths & Joshua B. Tenenbaum (2007). Two Proposals for Causal Grammars. In Alison Gopnik & Laura Schulz (eds.), Causal Learning: Psychology, Philosophy, and Computation. Oxford University Press 323--345.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography   7 citations  
  20.  14
    Julian Jara-Ettinger, Hyowon Gweon, Laura E. Schulz & Joshua B. Tenenbaum (2016). The Naïve Utility Calculus: Computational Principles Underlying Commonsense Psychology. Trends in Cognitive Sciences 20 (8):589-604.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  21.  24
    Steven T. Piantadosi, Joshua B. Tenenbaum & Noah D. Goodman (2012). Bootstrapping in a Language of Thought: A Formal Model of Numerical Concept Learning. Cognition 123 (2):199-217.
  22.  23
    Thomas L. Griffiths, David M. Sobel, Joshua B. Tenenbaum & Alison Gopnik (2011). Bayes and Blickets: Effects of Knowledge on Causal Induction in Children and Adults. Cognitive Science 35 (8):1407-1455.
    People are adept at inferring novel causal relations, even from only a few observations. Prior knowledge about the probability of encountering causal relations of various types and the nature of the mechanisms relating causes and effects plays a crucial role in these inferences. We test a formal account of how this knowledge can be used and acquired, based on analyzing causal induction as Bayesian inference. Five studies explored the predictions of this account with adults and 4-year-olds, using tasks in which (...)
    Direct download (6 more)  
     
    Export citation  
     
    My bibliography   3 citations  
  23.  21
    Nick Chater, Joshua B. Tenenbaum & Alan Yuille (2006). Probabilistic Models of Cognition: Where Next? Trends in Cognitive Sciences 10 (7):292-293.
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography   5 citations  
  24.  7
    Patrick Shafto, Charles Kemp, Vikash Mansinghka & Joshua B. Tenenbaum (2011). A Probabilistic Model of Cross-Categorization. Cognition 120 (1):1-25.
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography   3 citations  
  25.  6
    Noah D. Goodman, Chris L. Baker & Joshua B. Tenenbaum (2009). Cause and Intent: Social Reasoning in Causal Learning. In N. A. Taatgen & H. van Rijn (eds.), Proceedings of the 31st Annual Conference of the Cognitive Science Society. 2759--2764.
    Direct download  
     
    Export citation  
     
    My bibliography   4 citations  
  26.  11
    Thomas L. Griffiths & Joshua B. Tenenbaum (2007). From Mere Coincidences to Meaningful Discoveries. Cognition 103 (2):180-226.
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   5 citations  
  27. Julian Jara-Ettinger, Hyowon Gweon, Joshua B. Tenenbaum & Laura E. Schulz (2015). Children’s Understanding of the Costs and Rewards Underlying Rational Action. Cognition 140:14-23.
    Direct download  
     
    Export citation  
     
    My bibliography   1 citation  
  28.  2
    Michael C. Frank & Joshua B. Tenenbaum (2014). Corrigendum to “Three Ideal Observer Models for Rule Learning in Simple Languages” [Cognition 120 360–371]. Cognition 132 (3):501.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  29.  6
    Patrick Shafto, Charles Kemp, Elizabeth Baraff Bonawitz, John D. Coley & Joshua B. Tenenbaum (2008). Inductive Reasoning About Causally Transmitted Properties. Cognition 109 (2):175-192.
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   4 citations  
  30. Tevye R. Krynski & Joshua B. Tenenbaum (2007). The Role of Causality in Judgment Under Uncertainty. Journal of Experimental Psychology: General 136 (3):430-450.
    Direct download  
     
    Export citation  
     
    My bibliography   5 citations  
  31.  19
    Charles Kemp, Noah D. Goodman & Joshua B. Tenenbaum (2007). Learning Causal Schemata. In McNamara D. S. & Trafton J. G. (eds.), Proceedings of the 29th Annual Cognitive Science Society. Cognitive Science Society 389--394.
    Direct download  
     
    Export citation  
     
    My bibliography   4 citations  
  32.  12
    Michael C. Frank, Noah D. Goodman, Peter Lai & Joshua B. Tenenbaum (2009). Informative Communication in Word Production and Word Learning. In N. A. Taatgen & H. van Rijn (eds.), Proceedings of the 31st Annual Conference of the Cognitive Science Society.
    Direct download  
     
    Export citation  
     
    My bibliography   3 citations  
  33.  12
    Timothy F. Brady & Joshua B. Tenenbaum (2010). Encoding Higher-Order Structure in Visual Working Memory: A Probabilistic Model. In S. Ohlsson & R. Catrambone (eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society. Cognitive Science Society 411--416.
    Direct download  
     
    Export citation  
     
    My bibliography   2 citations  
  34.  15
    Lauren A. Schmidt, Noah D. Goodman, David Barner & Joshua B. Tenenbaum (2009). How Tall is Tall? Compositionality, Statistics, and Gradable Adjectives. In N. A. Taatgen & H. van Rijn (eds.), Proceedings of the 31st Annual Conference of the Cognitive Science Society.
    Direct download  
     
    Export citation  
     
    My bibliography   2 citations  
  35.  3
    Peter C. Pantelis, Chris L. Baker, Steven A. Cholewiak, Kevin Sanik, Ari Weinstein, Chia-Chien Wu, Joshua B. Tenenbaum & Jacob Feldman (2014). Inferring the Intentional States of Autonomous Virtual Agents. Cognition 130 (3):360-379.
  36.  14
    Robert L. Goldstone, Steven A. Sloman, David A. Lagnado, Mark Steyvers, Joshua B. Tenenbaum, Saskia Jaarsveld, Cees van Leeuwen, Murray Shanahan, Terry Dartnall & Simon Dennis (2005). Subject Index to Volume 29. Cognitive Science 29:1093-1096.
    Direct download  
     
    Export citation  
     
    My bibliography   3 citations  
  37. Thomas L. Griffiths, Mark Steyvers & Joshua B. Tenenbaum (2007). Topics in Semantic Representation. Psychological Review 114 (2):211-244.
    No categories
    Direct download  
     
    Export citation  
     
    My bibliography   3 citations  
  38. Thomas L. Griffiths & Joshua B. Tenenbaum (2009). Theory-Based Causal Induction. Psychological Review 116 (4):661-716.
    No categories
    Direct download  
     
    Export citation  
     
    My bibliography   2 citations  
  39.  1
    Fei Xu & Joshua B. Tenenbaum (2007). Word Learning as Bayesian Inference. Psychological Review 114 (2):245-272.
    No categories
    Direct download  
     
    Export citation  
     
    My bibliography   2 citations  
  40.  23
    Nick Chater, Joshua B. Tenenbaum & Alan Yuille (2006). Subjective Probability in a Nutshell. Trends in Cognitive Sciences 10 (7):287-291.
    Direct download  
     
    Export citation  
     
    My bibliography   1 citation  
  41. Noah D. Goodman, Tomer D. Ullman & Joshua B. Tenenbaum (2011). Learning a Theory of Causality. Psychological Review 118 (1):110-119.
    No categories
    Direct download  
     
    Export citation  
     
    My bibliography   1 citation  
  42. Denis M. Walsh, Leah Henderson, Noah D. Goodman, Joshua B. Tenenbaum, James F. Woodward, Hannes Leitgeb, Richard Pettigrew, Brad Weslake & John Kulvicki (2010). 1. Not a Sure Thing: Fitness, Probability, and Causation Not a Sure Thing: Fitness, Probability, and Causation (Pp. 147-171). [REVIEW] Philosophy of Science 77 (2).
     
    Export citation  
     
    My bibliography   1 citation  
  43.  3
    Joshua B. Tenenbaum & Thomas L. Griffiths (2001). Some Specifics About Generalization. Behavioral and Brain Sciences 24 (4):762-778.
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography   2 citations  
  44.  8
    Joshua B. Tenenbaum, Thomas L. Griffiths & Charles Kemp (2006). Questions for Future Research. Trends in Cognitive Sciences 10 (7):309-318.
    Direct download  
     
    Export citation  
     
    My bibliography   1 citation  
  45.  18
    Charles Kemp & Joshua B. Tenenbaum (2008). Structured Models of Semantic Cognition. Behavioral and Brain Sciences 31 (6):717-718.
    Rogers & McClelland (R&M) criticize models that rely on structured representations such as categories, taxonomic hierarchies, and schemata, but we suggest that structured models can account for many of the phenomena that they describe. Structured approaches and parallel distributed processing (PDP) approaches operate at different levels of analysis, and may ultimately be compatible, but structured models seem more likely to offer immediate insight into many of the issues that R&M discuss.
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  46.  26
    Virginia Savova, Daniel Roy, Lauren Schmidt & Joshua B. Tenenbaum (forthcoming). Discovering Syntactic Hierarchies. Cognitive Science.
    Direct download  
     
    Export citation  
     
    My bibliography  
  47. Charles Kemp & Joshua B. Tenenbaum (2009). Structured Statistical Models of Inductive Reasoning. Psychological Review 116 (1):20-58.
    No categories
    Direct download  
     
    Export citation  
     
    My bibliography   1 citation  
  48.  18
    Fei Xu & Joshua B. Tenenbaum (2001). Rational Statistical Inference: A Critical Component for Word Learning. Behavioral and Brain Sciences 24 (6):1123-1124.
    In order to account for how children can generalize words beyond a very limited set of labeled examples, Bloom's proposal of word learning requires two extensions: a better understanding of the “general learning and memory abilities” involved, and a principled framework for integrating multiple conflicting constraints on word meaning. We propose a framework based on Bayesian statistical inference that meets both of those needs.
    Direct download (6 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  49.  15
    Steven T. Piantadosi, Joshua B. Tenenbaum & Noah D. Goodman (forthcoming). Bootstrapping in a Language of Thought: A Formal Model of Conceptual Change in Number Word Learning. Cognition.
    Direct download  
     
    Export citation  
     
    My bibliography  
  50.  10
    Steven T. Piantadosi, Joshua B. Tenenbaum & Noah D. Goodman (2010). Beyond Boolean Logic: Exploring Representation Languages for Learning Complex Concepts. In S. Ohlsson & R. Catrambone (eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society. Cognitive Science Society 859--864.
    Direct download  
     
    Export citation  
     
    My bibliography  
1 — 50 / 58