10 found
Sort by:
Disambiguations:
Konrad Zdanowski [8]K. Zdanowski [2]
  1. Katarzyna Budzynska, Michal Araszkiewicz, Barbara Bogołȩbska, Piotr Cap, Tadeusz Ciecierski, Kamila Debowska-Kozlowska, Barbara Dunin-Kȩplicz, Marcin Dziubiński, Michał Federowicz, Anna Gomolińska, Andrzej Grabowski, Teresa Hołówka, Łukasz Jochemczyk, Magdalena Kacprzak, Paweł Kawalec, Maciej Kielar, Andrzej Kisielewicz, Marcin Koszowy, Robert Kublikowski, Piotr Kulicki, Anna Kuzio, Piotr Lewiński, Jakub Z. Lichański, Jacek Malinowski, Witold Marciszewski, Edward Nieznański, Janina Pietrzak, Jerzy Pogonowski, Tomasz A. Puczyłowski, Jolanta Rytel, Anna Sawicka, Marcin Selinger, Andrzej Skowron, Joanna Skulska, Marek Smolak, Małgorzata Sokół, Agnieszka Sowińska, Piotr Stalmaszczyk, Tomasz Stawecki, Jarosław Stepaniuk, Alina Strachocka, Wojciech Suchoń, Krzysztof Szymanek, Justyna Tomczyk, Robert Trypuz, Kazimierz Trzȩsicki, Mariusz Urbański, Ewa Wasilewska-Kamińska, Krzysztof A. Wieczorek, Maciej Witek, Urszula Wybraniec-Skardowska, Olena Yaskorska, Maria Załȩska, Konrad Zdanowski & Żure (2014). The Polish School of Argumentation: A Manifesto. Argumentation 28 (3):267-282.
    Building on our diverse research traditions in the study of reasoning, language and communication, the Polish School of Argumentation integrates various disciplines and institutions across Poland in which scholars are dedicated to understanding the phenomenon of the force of argument. Our primary goal is to craft a methodological programme and establish organisational infrastructure: this is the first key step in facilitating and fostering our research movement, which joins people with a common research focus, complementary skills and an enthusiasm to work (...)
    No categories
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  2. Lorenzo Carlucci & Konrad Zdanowski (2012). A Note on Ramsey Theorems and Turing Jumps. In. In S. Barry Cooper (ed.), How the World Computes. 89--95.
    No categories
    Direct download  
     
    My bibliography  
     
    Export citation  
  3. Henryk Kotlarski & Konrad Zdanowski (2009). On a Question of Andreas Weiermann. Mlq 55 (2):201-211.
    No categories
    Direct download (4 more)  
     
    My bibliography  
     
    Export citation  
  4. Konrad Zdanowski (2009). On Second Order Intuitionistic Propositional Logic Without a Universal Quantifier. Journal of Symbolic Logic 74 (1):157-167.
    We examine second order intuitionistic propositional logic, IPC². Let $F_\exists $ be the set of formulas with no universal quantification. We prove Glivenko's theorem for formulas in $F_\exists $ that is, for φ € $F_\exists $ φ is a classical tautology if and only if ¬¬φ is a tautology of IPC². We show that for each sentence φ € $F_\exists $ (without free variables), φ is a classical tautology if and only if φ is an intuitionistic tautology. As a corollary (...)
    Direct download (5 more)  
     
    My bibliography  
     
    Export citation  
  5. Paula Quinon & Konrad Zdanowski, The Intended Model of Arithmetic. An Argument From Tennenbaum's Theorem.
    No categories
    Translate to English
    |
     
    My bibliography  
     
    Export citation  
  6. M. Krynicki & K. Zdanowski (2005). Theories of Arithmetics in Finite Models. Journal of Symbolic Logic 70 (1):1-28.
    We investigate theories of initial segments of the standard models for arithmetics. It is easy to see that if the ordering relation is definable in the standard model then the decidability results can be transferred from the infinite model into the finite models. On the contrary we show that the Σ₂—theory of multiplication is undecidable in finite models. We show that this result is optimal by proving that the Σ₁—theory of multiplication and order is decidable in finite models as well (...)
    Direct download (6 more)  
     
    My bibliography  
     
    Export citation  
  7. X. Li, M. Mostowski, K. Zdanowski, Mr Burke & M. Kada (2004). M. RUBIN On La Ia Complete Extensions of Complete Theories of Boolean Algebras 571 A. ROStANOWSKI• S. SHELAH Sweet & Sour and Other Flavours of Ccc Forcing. [REVIEW] Archive for Mathematical Logic 43 (5):720.
    No categories
     
    My bibliography  
     
    Export citation  
  8. Marcin Mostowski & Konrad Zdanowski (2004). Degrees of Logics with Henkin Quantifiers in Poor Vocabularies. Archive for Mathematical Logic 43 (5):691-702.
    We investigate some logics with Henkin quantifiers. For a given logic L, we consider questions of the form: what is the degree of the set of L–tautologies in a poor vocabulary (monadic or empty)? We prove that the set of tautologies of the logic with all Henkin quantifiers in empty vocabulary L*∅ is of degree 0’. We show that the same holds also for some weaker logics like L ∅(Hω) and L ∅(Eω). We show that each logic of the form (...)
    No categories
    Direct download (4 more)  
     
    My bibliography  
     
    Export citation  
  9. Joanna Golińska & Konrad Zdanowski (2003). Spectra of Formulae with Henkin Quantifiers. In. In A. Rojszczak, J. Cachro & G. Kurczewski (eds.), Philosophical Dimensions of Logic and Science. Kluwer Academic Publishers. 29--45.
    No categories
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  10. Joanna Golinska-Pilarek & Konrad Zdanowski (2003). Spectra of Formulae with Henkin Quantifiers. In A. Rojszczak, J. Cachro & G. Kurczewski (eds.), Philosophical Dimensions of Logic and Science. Kluwer Academic Publishers.
    It is known that various complexity-theoretical problems can be translated into some special spectra problems. Thus, questions about complexity classes are translated into questions about the expressive power of some languages. In this paper we investigate the spectra of some logics with Henkin quantifiers in the empty vocabulary.
    Translate to English
    | Direct download  
     
    My bibliography  
     
    Export citation