31 found
Order:
  1.  6
    Kenneth Kunen (1970). Some Applications of Iterated Ultrapowers in Set Theory. Annals of Mathematical Logic 1 (2):179-227.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography   51 citations  
  2. Tim Carlson, Kenneth Kunen & Arnold W. Miller (1984). A Minimal Degree Which Collapses Ω. Journal of Symbolic Logic 49 (1):298 - 300.
    We consider a well-known partial order of Prikry for producing a collapsing function of minimal degree. Assuming MA + ≠ CH, every new real constructs the collapsing map.
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  3. Kenneth Kunen & Franklin D. Tall (2000). The Real Line in Elementary Submodels of Set Theory. Journal of Symbolic Logic 65 (2):683-691.
    Keywords: Elementary Submodel; Real Line; Order-Isomorphic.
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography  
  4. Kenneth Kunen & Karel Prikry (1971). On Descendingly Incomplete Ultrafilters. Journal of Symbolic Logic 36 (4):650-652.
  5. Kenneth Kunen (1968). Implicit Definability and Infinitary Languages. Journal of Symbolic Logic 33 (3):446-451.
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography   2 citations  
  6.  17
    Kenneth Kunen (1971). Elementary Embeddings and Infinitary Combinatorics. Journal of Symbolic Logic 36 (3):407-413.
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography   18 citations  
  7.  11
    Kenneth Kunen (1978). Saturated Ideals. Journal of Symbolic Logic 43 (1):65-76.
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography   13 citations  
  8.  2
    Jon Barwise & Kenneth Kunen (1984). Hanf Numbers for Fragments of L ∞Ω. Journal of Symbolic Logic 49 (1):315-315.
    Direct download  
     
    Export citation  
     
    My bibliography   7 citations  
  9.  11
    Kenneth Kunen (1988). Where Ma First Fails. Journal of Symbolic Logic 53 (2):429-433.
    If θ is any singular cardinal of cofinality ω 1 , we produce a forcing extension in which MA holds below θ but fails at θ. The failure is due to a partial order which splits a gap of size θ in P(ω).
    Direct download (6 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  10.  4
    Kenneth Kunen (1973). XVI. A Model for the Negation of the Axiom of Choice. In A. R. D. Mathias & H. Rogers (eds.), Cambridge Summer School in Mathematical Logic. New York,Springer-Verlag 489--494.
    Direct download  
     
    Export citation  
     
    My bibliography   4 citations  
  11.  13
    H. Jerome Keisler, Kenneth Kunen, Arnold Miller & Steven Leth (1989). Descriptive Set Theory Over Hyperfinite Sets. Journal of Symbolic Logic 54 (4):1167-1180.
    The separation, uniformization, and other properties of the Borel and projective hierarchies over hyperfinite sets are investigated and compared to the corresponding properties in classical descriptive set theory. The techniques used in this investigation also provide some results about countably determined sets and functions, as well as an improvement of an earlier theorem of Kunen and Miller.
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography   3 citations  
  12.  18
    John Addison, Jon Barwise, H. Jerome Keisler, Kenneth Kunen & Yiannis N. Moschovakis (1979). The Kleene Symposium and the Summer Meeting of the Association for Symbolic Logic. Journal of Symbolic Logic 44 (3):469-480.
  13.  17
    Jon Barwise, Kenneth Kunen & Joseph Ullian (1978). Annual Meeting of the Association for Symbolic Logic: Saint Louis, 1977. Journal of Symbolic Logic 43 (2):365-372.
  14.  19
    Kenneth Kunen & Donald H. Pelletier (1983). On a Combinatorial Property of Menas Related to the Partition Property for Measures on Supercompact Cardinals. Journal of Symbolic Logic 48 (2):475-481.
    T. K. Menas [4, pp. 225-234] introduced a combinatorial property χ (μ) of a measure μ on a supercompact cardinal κ and proved that measures with this property also have the partition property. We prove here that Menas' property is not equivalent to the partition property. We also show that if α is the least cardinal greater than κ such that P κ α bears a measure without the partition property, then α is inaccessible and Π 2 1 -indescribable.
    Direct download (6 more)  
     
    Export citation  
     
    My bibliography  
  15.  4
    Kenneth Kunen (1975). Review: J. R. Shoenfield, Measurable Cardinals. [REVIEW] Journal of Symbolic Logic 40 (1):93-94.
    Direct download  
     
    Export citation  
     
    My bibliography  
  16.  9
    Kenneth Kunen & Dilip Raghavan (2009). Gregory Trees, the Continuum, and Martin's Axiom. Journal of Symbolic Logic 74 (2):712-720.
    We continue the investigation of Gregory trees and the Cantor Tree Property carried out by Hart and Kunen. We produce models of MA with the Continuum arbitrarily large in which there are Gregory trees, and in which there are no Gregory trees.
    Direct download (6 more)  
     
    Export citation  
     
    My bibliography  
  17.  1
    John Baldwin, Lev Beklemishev, Michael Hallett, Valentina Harizanov, Steve Jackson, Kenneth Kunen, Angus J. MacIntyre, Penelope Maddy, Joe Miller & Michael Rathjen (2005). Carnegie Mellon University, Pittsburgh, PA May 19–23, 2004. Bulletin of Symbolic Logic 11 (1).
    Direct download  
     
    Export citation  
     
    My bibliography  
  18. John Addison, Jon Barwise, H. Jerome Keisler, Kenneth Kunen & Yiannis N. Moschovakis (1979). The Kleene Symposium and the Summer Meeting of the Association for Symbolic Logic, Madison 1978. Journal of Symbolic Logic 44 (3):469-480.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  19. James E. Baumgartner & Kenneth Kunen (1986). Set Theory. An Introduction to Independence Proofs. Journal of Symbolic Logic 51 (2):462.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  20. Tim Carlson, Kenneth Kunen & Arnold W. Miller (1984). A Minimal Degree Which Collapses $Omega_1$. Journal of Symbolic Logic 49 (1):298-300.
    We consider a well-known partial order of Prikry for producing a collapsing function of minimal degree. Assuming $MA + \neq CH$, every new real constructs the collapsing map.
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  21. Tim Carlson, Kenneth Kunen & Arnold W. Miller (1984). A Minimal Degree Which Collapses Ω1. Journal of Symbolic Logic 49 (1):298-300.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  22. Stephen Cole Kleene, Jon Barwise, H. Jerome Keisler & Kenneth Kunen (eds.) (1980). The Kleene Symposium: Proceedings of the Symposium Held June 18-24, 1978 at Madison, Wisconsin, U.S.A. Sole Distributors for the U.S.A. And Canada, Elsevier North-Holland.
    No categories
     
    Export citation  
     
    My bibliography  
  23. Kenneth Kunen (1970). Cohen Paul J.. Set Theory and the Continuum Hypothesis. W. A. Benjamin, Inc., New York and Amsterdam 1966, Vi + 154 Pp. [REVIEW] Journal of Symbolic Logic 35 (4):591-592.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  24. Kenneth Kunen (1981). Enderton Herbert B.. Elements of Set Theory. Academic Press, New York, San Francisco, and London, 1977, Xiv + 279 Pp. [REVIEW] Journal of Symbolic Logic 46 (1):164-165.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  25. Kenneth Kunen (1969). [Omnibus Review]. Journal of Symbolic Logic 34 (3):515-516.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  26. Kenneth Kunen (1981). Review: Herbert B. Enderton, Elements of Set Theory. [REVIEW] Journal of Symbolic Logic 46 (1):164-165.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  27. Kenneth Kunen (1970). Review: Paul J. Cohen, Set Theory and the Continuum Hypothesis. [REVIEW] Journal of Symbolic Logic 35 (4):591-592.
    Direct download  
     
    Export citation  
     
    My bibliography  
  28. Kenneth Kunen (1975). Shoenfield J. R.. Measurable Cardinals. Logic Colloquium '69, Proceedings of the Summer School and Colloquium in Mathematical Logic, Manchester, August 1969, Edited by Gandy R. O. And Yates C. E. M., Studies in Logic and the Foundations of Mathematics, Vol. 61, North-Holland Publishing Company, Amsterdam and London 1971, Pp. 19–49. [REVIEW] Journal of Symbolic Logic 40 (1):93-94.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  29. Kenneth Kunen (1969). Vopěnka P.. The Limits of Sheaves and Applications on Constructions of Models. Bulletin de l'Académie Polonaise des Sciences, Série des Sciences Mathématiques, Astronomiques Et Physiques, Vol. 13 , Pp. 189–192.Vopěnka P.. On ∇-Model of Set Theory. Bulletin de l'Académie Polonaise des Sciences, Série des Sciences Mathématiques, Astronomiques Et Physiques, Vol. 13 , Pp. 267–272.Vopěnka P.. Properties of ∇-Model. Bulletin de l'Académie Polonaise des Sciences, Série des Sciences Mathématiques, Astronomiques Et Physiques, Vol. 13 , Pp. 441–444.Vopěnka P. And Hájek P.. Permutation Submodels of the Model ∇. Bulletin de l'Académie Polonaise des Sciences, Série des Sciences Mathématiques, Astronomiques Et Physiques, Vol. 13 , Pp. 611–614.Hájek P. And Vopěnka P.. Some Permutation Submodels of the Model ∇. Bulletin de l'Académie Polonaise des Sciences, Série des Sciences Mathématiques, Astronomiques Et Physiques, Vol. 14 , Pp. 1–7.Vopěnka P.. ∇-Models in Which the Generalized Continuum Hypothesis. [REVIEW] Journal of Symbolic Logic 34 (3):515-516.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  30. Kenneth Kunen (1988). Where MA First Fails. Journal of Symbolic Logic 53 (2):429-433.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  31. Carlos Augusto Di Prisco, Telis K. Menas, Donald H. Pelletier, Kenneth Kunen & Julius B. Barbanel (1991). A Combinatorial Property of P Κ Λ.The Partition Property for Certain Extendible Measures on Supercompact Cardinals.On a Combinatorial Property of Menas Related to the Partition Property for Measures on Supercompact Cardinals.Supercompact Cardinals, Trees of Normal Ultrafilters, and the Partition Property. [REVIEW] Journal of Symbolic Logic 56 (3):1098.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography