11 found
Sort by:
Disambiguations:
Klaus T. Aehlig [6]Klaus Aehlig [5]
  1. Klaus Aehlig & Arnold Beckmann (2010). On the Computational Complexity of Cut-Reduction. Annals of Pure and Applied Logic 161 (6):711-736.
    Direct download (4 more)  
     
    My bibliography  
     
    Export citation  
  2. Martın Abadi, Yoshihiro Abe, Andreas Abel, Francine F. Abeles, Andrew Aberdein, J. David Abernethy, Nate Ackerman, Bryant Adams, Winifred P. Adams & Klaus T. Aehlig (2009). Individual Members 2009. Bulletin of Symbolic Logic 15 (4).
    Direct download  
     
    My bibliography  
     
    Export citation  
  3. Martın Abadi, Yoshihiro Abe, Andreas Abel, Francine F. Abeles, Andrew Aberdein, J. David Abernethy, Bryant Adams, Klaus T. Aehlig, Fritz Aeschbach & Henry Louis Africk (2008). Individual Members 2008. Bulletin of Symbolic Logic 14 (4).
    Direct download  
     
    My bibliography  
     
    Export citation  
  4. Klaus Aehlig (2008). Parameter-Free Polymorphic Types. Annals of Pure and Applied Logic 156 (1):3-12.
    Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  5. Martın Abadi, Yoshihiro Abe, Andreas Abel, Francine F. Abeles, Andrew Aberdein, Nathanael Ackerman, Bryant Adams, Klaus T. Aehlig, Fritz Aeschbach & Henry Louis Africk (2007). Individual Members 2007. Bulletin of Symbolic Logic 13 (4).
    Direct download  
     
    My bibliography  
     
    Export citation  
  6. Martın Abadi, Yoshihiro Abe, Francine F. Abeles, Andrew Aberdein, Nathanael Ackerman, Bryant Adams, Klaus T. Aehlig, Fritz Aeschbach, Henry Louis Africk & Bahareh Afshari (2006). Individual Members 2006. Bulletin of Symbolic Logic 12 (4).
    Direct download  
     
    My bibliography  
     
    Export citation  
  7. Klaus Aehlig (2005). Induction and Inductive Definitions in Fragments of Second Order Arithmetic. Journal of Symbolic Logic 70 (4):1087 - 1107.
    A fragment with the same provably recursive functions as n iterated inductive definitions is obtained by restricting second order arithmetic in the following way. The underlying language allows only up to n + 1 nested second order quantifications and those are in such a way, that no second order variable occurs free in the scope of another second order quantifier. The amount of induction on arithmetical formulae only affects the arithmetical consequences of these theories, whereas adding induction for arbitrary formulae (...)
    Direct download (4 more)  
     
    My bibliography  
     
    Export citation  
  8. Klaus Aehlig & Felix Joachimski (2005). Continuous Normalization for the Lambda-Calculus and Gödel's. Annals of Pure and Applied Logic 133 (1-3):39-71.
    Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  9. Klaus Aehlig & Felix Joachimski (2005). Mathematisches Institut, Ludwig-Maximilians-Universitat Munchen, Theresienstrasse 39, 80333 Munchen, Germany. Annals of Pure and Applied Logic 133 (1-3):39-72.
     
    My bibliography  
     
    Export citation  
  10. Martın Abadi, Areski Nait Abdallah, Yoshihiro Abe, Francine F. Abeles, Andrew Aberdein, Vicente Aboites, Nathanael Ackerman, John W. Addison Jr, Klaus T. Aehlig & Fritz Aeschbach (2004). Individual Members 2004. Bulletin of Symbolic Logic 10 (4).
    Direct download  
     
    My bibliography  
     
    Export citation