29 found
Order:
  1. Kurt Gödel (1986). Collected Works. Oxford University Press.
    Kurt Godel was the most outstanding logician of the twentieth century, famous for his work on the completeness of logic, the incompleteness of number theory, and the consistency of the axiom of choice and the continuum hypothesis. He is also noted for his work on constructivity, the decision problem, and the foundations of computation theory, as well as for the strong individuality of his writings on the philosophy of mathematics. Less well-known is his discovery of unusual cosmological models for Einstein's (...)
     
    Export citation  
     
    My bibliography   42 citations  
  2. Kurt Godel, The modern development of the foundations of mathematics in the light of philosophy.
    Translate
      Direct download  
     
    Export citation  
     
    My bibliography   5 citations  
  3.  24
    Kurt Gödel (1964). What is Cantor's Continuum Problem (1964 Version). In P. Benacerraf H. Putnam (ed.), Journal of Symbolic Logic. Prentice-Hall 116-117.
    Direct download  
     
    Export citation  
     
    My bibliography   28 citations  
  4.  53
    Kurt Gödel (1944). Russell's Mathematical Logic. In Solomon Feferman, John Dawson & Stephen Kleene (eds.), Journal of Symbolic Logic. Northwestern University Press 119--141.
  5. Kurt Gödel (1944). The Philosophy of Bertrand Russell. Northwestern University Press.
    Translate
     
     
    Export citation  
     
    My bibliography   36 citations  
  6.  8
    Kurt Gödel (1947). What is Cantor's Continuum Problem? In Solomon Feferman, John Dawson & Stephen Kleene (eds.), Journal of Symbolic Logic. Oxford University Press 176--187.
    Direct download  
     
    Export citation  
     
    My bibliography   41 citations  
  7.  2
    Kurt Gödel (1940). The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis with the Axioms of Set Theory. Princeton University Press;.
  8. Kurt Gödel (1940). The Consistency of the Continuum Hypothesis. Princeton University Press.
    Translate
     
     
    Export citation  
     
    My bibliography   19 citations  
  9. Kurt Gödel (1949). An Example of a New Type of Cosmological Solutions of Einstein’s Field Equations of Gravitation. Reviews of Modern Physics 21 (3):447–450.
  10. Kurt Gödel (1972). On an Extension of Finitary Mathematics Which has Not yet Been Used. In Solomon Feferman, John Dawson & Stephen Kleene (eds.), Kurt Gödel: Collected Works Vol. Ii. Oxford University Press 271--284.
    Translate
     
     
    Export citation  
     
    My bibliography   7 citations  
  11.  38
    Kurt Gödel (1931). Diskussion Zur Grundlegung der Mathematik. Erkenntnis 2 (1):135-151.
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography   8 citations  
  12.  34
    Kurt Gödel (1980). On a Hitherto Unexploited Extension of the Finitary Standpoint. Journal of Philosophical Logic 9 (2):133 - 142.
    P. Bernays has pointed out that, in order to prove the consistency of classical number theory, it is necessary to extend Hilbert's finitary standpoint by admitting certain abstract concepts in addition to the combinatorial concepts referring to symbols. The abstract concepts that so far have been used for this purpose are those of the constructive theory of ordinals and those of intuitionistic logic. It is shown that the concept of a computable function of finite simple type over the integers can (...)
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography   2 citations  
  13.  6
    Kurt Godel (1980). On A Hitherto Unexploited Extension Of The Finitary Standpoint. Journal of Philosophical Logic 9 (2):133-142.
    P. Bernays has pointed out that, in order to prove the consistency of classical number theory, it is necessary to extend Hilbert's finitary standpoint by admitting certain abstract concepts in addition to the combinatorial concepts referring to symbols. The abstract concepts that so far have been used for this purpose are those of the constructive theory of ordinals and those of intuitionistic logic. It is shown that the concept of a computable function of finite simple type over the integers can (...)
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   2 citations  
  14.  9
    Kurt Gödel (2006). La lógica matemática de Russell. Teorema: International Journal of Philosophy 25 (2):113-138.
    No categories
    Translate
      Direct download  
     
    Export citation  
     
    My bibliography  
  15. Kurt Gödel (1953). Is Mathematics Syntax of Language? In K. Gödel Collected Works. Oxford University Press: Oxford 334--355.
    No categories
     
    Export citation  
     
    My bibliography   5 citations  
  16.  8
    Kurt Gödel (2006). Una observación sobre la relación entre la teoría de la relatividad y la filosofía idealista. Teorema: International Journal of Philosophy 25 (3):103-108.
    No categories
    Translate
      Direct download  
     
    Export citation  
     
    My bibliography  
  17.  19
    Kurt Gödel (1995). Les mathématiques sont-elles une syntaxe du langage? Dialogue 34 (01):3-.
    No categories
    Translate
      Direct download (4 more)  
     
    Export citation  
     
    My bibliography  
  18. Kurt Gödel (1946). Remarks Before the Princeton Bicentennial Conference on Problems in Mathematics. In Solomon Feferman, John Dawson & Stephen Kleene (eds.), Kurt Gödel: Collected Works Vol. Ii. Oxford University Press 150--153.
    No categories
    Translate
     
     
    Export citation  
     
    My bibliography   4 citations  
  19. Kurt Gödel (1972). Some Remarks on the Undecidability Results. In Solomon Feferman, John Dawson & Stephen Kleene (eds.), Kurt Gödel: Collected Works Vol. Ii. Oxford University Press 305--306.
    No categories
    Translate
     
     
    Export citation  
     
    My bibliography   2 citations  
  20.  1
    John Dawson, Kurt Godel & Robert Vaught (1990). Review of Skolem's Über Die Unmöglichkeit Einer Vollständigen Charakterisierung der Zahlenreihe Mittels Eines Endlichen Axiomensystems. [REVIEW] Journal of Symbolic Logic 55 (1):347-348.
    Direct download  
     
    Export citation  
     
    My bibliography  
  21. Kurt Gödel (1931). Diskussion zur Grundlegung der Mathematik am Sonntag, dem 7. Sept. 1930. Erkenntnis 2:135-151.
    No categories
    Translate
     
     
    Export citation  
     
    My bibliography   1 citation  
  22. Jack J. Bulloff, Kurt Gödel, S. W. Hahn, Thomas C. Holyoke & Ohio Academy of Science (1969). Foundations of Mathematics Symposium Papers Commemorating the Sixtieth Birthday of Kurt Gödel. Springer-Verlag.
     
    Export citation  
     
    My bibliography  
  23. Kurt Gödel, Solomon Feferman, John W. Dawson, Warren Goldfarb, Charles Parsons & Wilfried Sieg (2004). Collected Works. Vol. IV: Correspondence A-G. Vol. V: Correspondence H-Z. Tijdschrift Voor Filosofie 66 (1):165-166.
    No categories
    Translate
     
     
    Export citation  
     
    My bibliography  
  24. Kurt Gödel, Jack J. Bulloff, Thomas C. Holyoke & Samuel Wilfred Hahn (eds.) (1969). Foundations of Mathematics. New York, Springer.
     
    Export citation  
     
    My bibliography  
  25. Kurt Gödel (1953). K. Gödel Collected Works. Oxford University Press: Oxford.
    No categories
     
    Export citation  
     
    My bibliography  
  26.  28
    Kurt Gödel, Solomon Feferman, Charles Parsons & Stephen G. Simpson (eds.) (2010). Kurt Gödel: Essays for His Centennial. Association for Symbolic Logic.
    Machine generated contents note: Part I. General: 1. The Gödel editorial project: a synopsis Solomon Feferman; 2. Future tasks for Gödel scholars John W. Dawson, Jr., and Cheryl A. Dawson; Part II. Proof Theory: 3. Kurt Gödel and the metamathematical tradition Jeremy Avigad; 4. Only two letters: the correspondence between Herbrand and Gödel Wilfried Sieg; 5. Gödel's reformulation of Gentzen's first consistency proof for arithmetic: the no-counter-example interpretation W. W. Tait; 6. Gödel on intuition and on Hilbert's finitism W. W. (...)
    Direct download  
     
    Export citation  
     
    My bibliography  
  27.  50
    Kurt Gödel (1995). Unpublished Philosophical Essays. Birkhäuser Verlag.
    The goal of this book is to make available to the scholarly public solid reconstructions and editions of two of the most important essays which Godel wrote on ...
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  28. Kurt Godel (2004). Kurt Godel. In Julian Baggini & Jeremy Stangroom (eds.), The Great Thinkers a-Z. Continuum 105.
    No categories
     
    Export citation  
     
    My bibliography  
  29. Dimiter Genchev Skordev, Kurt Gödel & Advanced International Summer School and Conference on Mathematical Logic and Its Applications (1987). Mathematical Logic and its Applications.
     
    Export citation  
     
    My bibliography