5 found
Sort by:
  1. Don Howard, Bas van Fraassen, Otávio Bueno, Elena Castellani, Laura Crosilla, Steven French & Décio Krause (2011). The Physics and Metaphysics of Identity and Individuality. Metascience 20 (2):225-251.
    The physics and metaphysics of identity and individuality Content Type Journal Article DOI 10.1007/s11016-010-9463-7 Authors Don Howard, Department of Philosophy and Graduate Program in History and Philosophy of Science, University of Notre Dame, Notre Dame, IN 46556, USA Bas C. van Fraassen, Philosophy Department, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA Otávio Bueno, Department of Philosophy, University of Miami, Coral Gables, FL 33124, USA Elena Castellani, Department of Philosophy, University of Florence, Via Bolognese 52, 50139 (...)
    No categories
    Direct download (6 more)  
     
    My bibliography  
     
    Export citation  
  2. Laura Crosilla, Set Theory: Constructive and Intuitionistic Zf. Stanford Encyclopedia of Philosophy.
    No categories
    Translate to English
    | Direct download  
     
    My bibliography  
     
    Export citation  
  3. Peter Aczel, Laura Crosilla, Hajime Ishihara, Erik Palmgren & Peter Schuster (2006). Binary Refinement Implies Discrete Exponentiation. Studia Logica 84 (3):361 - 368.
    Working in the weakening of constructive Zermelo-Fraenkel set theory in which the subset collection scheme is omitted, we show that the binary re.nement principle implies all the instances of the exponentiation axiom in which the basis is a discrete set. In particular binary re.nement implies that the class of detachable subsets of a set form a set. Binary re.nement was originally extracted from the fullness axiom, an equivalent of subset collection, as a principle that was su.cient to prove that the (...)
    Direct download (6 more)  
     
    My bibliography  
     
    Export citation  
  4. Laura Crosilla, Hajime Ishihara & Peter Schuster (2005). On Constructing Completions. Journal of Symbolic Logic 70 (3):969-978.
    The Dedekind cuts in an ordered set form a set in the sense of constructive Zermelo—Fraenkel set theory. We deduce this statement from the principle of refinement, which we distill before from the axiom of fullness. Together with exponentiation, refinement is equivalent to fullness. None of the defining properties of an ordering is needed, and only refinement for two—element coverings is used. In particular, the Dedekind reals form a set; whence we have also refined an earlier result by Aczel and (...)
    Direct download (4 more)  
     
    My bibliography  
     
    Export citation  
  5. Laura Crosilla & Peter Schuster (eds.) (2005). From Sets and Types to Topology and Analysis: Towards Practicable Foundations for Constructive Mathematics. Oxford University Press.
    This edited collection bridges the foundations and practice of constructive mathematics and focuses on the contrast between the theoretical developments, which have been most useful for computer science (ie: constructive set and type theories), and more specific efforts on constructive analysis, algebra and topology. Aimed at academic logician, mathematicians, philosophers and computer scientists with contributions from leading researchers, it is up to date, highly topical and broad in scope.
    Direct download  
     
    My bibliography  
     
    Export citation