Search results for 'Mathematics, Greek' (try it on Scholar)

1000+ found
Order:
  1. James Gow (2010). A Short History of Greek Mathematics. Cambridge University Press.
    James Gow's A Short History of Greek Mathematics provided the first full account of the subject available in English, and it today remains a clear and thorough guide to early arithmetic and geometry. Beginning with the origins of the numerical system and proceeding through the theorems of Pythagoras, Euclid, Archimedes and many others, the Short History offers in-depth analysis and useful translations of individual texts as well as a broad historical overview of the development of mathematics. Parts I and (...)
    No categories
     
    Export citation  
     
    My bibliography  
  2.  6
    L. Kvasz (2011). A Ludic Book on Ludic Proof * Reviel Netz. Ludic Proof, Greek Mathematics and Alexandrian Aesthetic. Cambridge: Cambridge University Press, 2009. ISBN 978-0-521-89894-2. Pp. Xvi + 255. [REVIEW] Philosophia Mathematica 19 (1):91-95.
    The latest book of Reviel Netz presents a highly erudite analysis of the style of Hellenistic mathematics. Besides the Introduction and Conclusion the book is composed of four chapters. Before turning to more general remarks I would like first to outline the contents of the book.The Introduction starts with the presentation of Archimedes’ Spiral lines. In a condensed form, the author outlines his approach and calls attention to the stylistic peculiarities of that work. Most of the themes discussed in more (...)
    Direct download (10 more)  
     
    Export citation  
     
    My bibliography  
  3. Reviel Netz (2009). Ludic Proof: Greek Mathematics and the Alexandrian Aesthetic. Cambridge University Press.
    This book represents a new departure in science studies: an analysis of a scientific style of writing, situating it within the context of the contemporary style of literature. Its philosophical significance is that it provides a novel way of making sense of the notion of a scientific style. For the first time, the Hellenistic mathematical corpus - one of the most substantial extant for the period - is placed centre-stage in the discussion of Hellenistic culture as a whole. Professor Netz (...)
    No categories
     
    Export citation  
     
    My bibliography  
  4. Francisco Miro Quesada (1997). LOGIC, MATHEMATICS, ONTOLOGY 1 Crisis Since its Very Beginning Mathematics Was Deeply Related to Logic and Ontology. Greek Mathematicians Consciously Applied the Contradiction Principle and Had a Clear Idea of the Soundness of Modus Ponens and Of. In Evandro Agazzi & György Darvas (eds.), Philosophy of Mathematics Today. Kluwer 3.
     
    Export citation  
     
    My bibliography  
  5.  28
    Darrell Rowbottom, Book Review : The Shaping of Deduction in Greek Mathematics : A Study in Cognitive History. [REVIEW]
    No categories
    Direct download  
     
    Export citation  
     
    My bibliography  
  6.  65
    Daniel Sutherland (2004). Kant's Philosophy of Mathematics and the Greek Mathematical Tradition. Philosophical Review 113 (2):157-201.
    The aggregate EIRP of an N-element antenna array is proportional to N 2. This observation illustrates an effective approach for providing deep space networks with very powerful uplinks. The increased aggregate EIRP can be employed in a number of ways, including improved emergency communications, reaching farther into deep space, increased uplink data rates, and the flexibility of simultaneously providing more than one uplink beam with the array. Furthermore, potential for cost savings also exists since the array can be formed using (...)
    Direct download (12 more)  
     
    Export citation  
     
    My bibliography   7 citations  
  7.  54
    Howard Stein (1990). Eudoxos and Dedekind: On the Ancient Greek Theory of Ratios and its Relation to Modern Mathematics. Synthese 84 (2):163 - 211.
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography   4 citations  
  8.  19
    Jenz Høyrup (2005). The Shaping of Deduction in Greek Mathematics: A Study in Coginitive History. [REVIEW] Studia Logica 80 (1):143-147.
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography  
  9.  13
    Ian Mueller (1974). Greek Mathematics and Greek Logic. In John Corcoran (ed.), Ancient Logic and its Modern Interpretations. Boston,Reidel 35--70.
    No categories
    Direct download  
     
    Export citation  
     
    My bibliography   7 citations  
  10.  4
    Fabio Acerbi (2010). Homeomeric Lines in Greek Mathematics. Science in Context 23 (1):1.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  11. Piedad Yuste Leciñena (2010). Amazing Traces of a Babylonian Origin in Greek Mathematics, de Jöran Friberg. Teorema: International Journal of Philosophy 29 (2):175-178.
    No categories
     
    Export citation  
     
    My bibliography  
  12.  1
    Thomas Heath (1923). A History of Greek Mathematics. Journal of Hellenic Studies 43:81.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography   12 citations  
  13.  10
    Erik Stenius (1978). Foundations of Mathematics: Ancient Greek and Modern. Dialectica 32 (3‐4):255-290.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography   2 citations  
  14. Ian Mueller (forthcoming). Greek Mathematics (Arithmetic, Geometry, Proportion Theory) to the Time of Euclid. A Companion to Ancient Philosophy.
    No categories
     
    Export citation  
     
    My bibliography  
  15.  8
    Richard Wallace (1993). Greek Mathematics. The Classical Review 43 (02):410-.
  16.  9
    Fabio Acerbi (2010). Two Approaches to Foundations in Greek Mathematics: Apollonius and Geminus. Science in Context 23 (2):151-186.
  17.  4
    J. A. Smith (1923). A History of Greek Mathematics A History of Greek Mathematics. By Sir Thomas Heath. Clarendon Press, Oxford, 1921. Two Vols. 50s. Net. [REVIEW] The Classical Review 37 (3-4):69-71.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  18.  4
    D'arcy W. Thompson (1942). Mathematics From Aristarchus to Pappus Ivor Thomas: Selections Illustrating the History of Greek Mathematics. With an English Translation. In Two Volumes. II. From Aristarchus to Pappus. Pp. Xii+683. (Loeb Classical Library.) London: Heinemann, 1941. Cloth, 10s. (Leather, 12s. 6d.) Net. [REVIEW] The Classical Review 56 (2):75-76.
  19.  11
    Vassilis Karasmanis (2009). Continuity and Incommensurability in Ancient Greek Philosophy and Mathematics. Philosophical Inquiry 31 (1-2):249-260.
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography  
  20.  7
    T. L. Heath (1923). Greek Mathematics and Physics Mathematics and Physical Science in Classical Antiquity. Translated From the German of J. L. Hejberg, by D. C. MacGregor. One Vol. Crown 8vo. Pp. 110. Oxford University Press, 1922. 2S. 6d. Net. [REVIEW] The Classical Review 37 (5-6):133-.
  21.  4
    Wilbur Knorr (1981). The Beginnings of Greek Mathematics by Árpád Szabó; A. M. Ungar; Les Débuts des Mathématiques Grecques by Árpád Szabó; M. Federspiel. [REVIEW] Isis: A Journal of the History of Science 72:135-136.
    Direct download  
     
    Export citation  
     
    My bibliography  
  22.  6
    R. A. Tomlinson (1995). The Stadion D. G. Romano: Athletics and Mathematics in Archaic Corinth: The Origins of the Greek Stadion. (Memoirs of the American Philosophical Society, 206.) Pp. Xiv+117, 53 Figs. Philadelphia: American Philosophical Society, 1993. Paper. [REVIEW] The Classical Review 45 (02):372-373.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  23.  15
    Michael Boylan (1983). Book Review:Philosophy of Mathematics and Deductive Structure in Euclid's Elements Ian Mueller; The Beginnings of Greek Mathematics Arpad Szabo, A. M. Ungar. [REVIEW] Philosophy of Science 50 (4):665-.
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  24.  5
    Philip Thibodeau (2004). Science and Mathematics in Ancient Greek Culture (Review). American Journal of Philology 125 (1):140-144.
    No categories
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography  
  25.  13
    David Sedley (2000). Thinking with Diagrams R. Netz: The Shaping of Deduction in Greek Mathematics: A Study in Cognitive History . Pp. XVII + 327, Ills. Cambridge: Cambridge University Press, 1999. Cased, £40. Isbn: 0-521-62279-. [REVIEW] The Classical Review 50 (01):166-.
  26.  16
    P. Rusnock & P. Thagard (1995). Strategies for Conceptual Change: Ratio and Proportion in Classical Greek Mathematics. Studies in History and Philosophy of Science Part A 26 (1):107-131.
    …all men begin… by wondering that things are as they are…as they do about…the incommensurability of the diagonal of the square with the side; for it seems wonderful to all who have not yet seen the reason, that there is a thing which cannot be measured even by the smallest unit. But we must end in the contrary and, according to the proverb, the better state, as is the case in these instances too when men learn the cause; for there (...)
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  27.  12
    Thomas Greenwood (1932). A Manual of Greek Mathematics. By Sir Thomas Heath K.C.B., K.C.V.O., F.R.S., Sc.D. (London: Oxford Clarendon Press (Humphrey Milford). 1931. Pp. 568). [REVIEW] Philosophy 7 (27):361-.
    No categories
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography  
  28.  2
    Markus Asper (2013). R. Netz Ludic Proof. Greek Mathematics and the Alexandrian Aesthetic. Pp. Xvi + 255, Figs. Cambridge: Cambridge University Press, 2009. Cased, £62, US$107. ISBN: 978-0-521-89894-2. [REVIEW] The Classical Review 63 (1):75-77.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  29.  2
    George Sarton (1922). A History Of Greek Mathematics By Thomas Heath. [REVIEW] Isis: A Journal of the History of Science 4:532-535.
    Direct download  
     
    Export citation  
     
    My bibliography  
  30.  2
    Roy Wagner (2009). For Some Histories of Greek Mathematics. Science in Context 22 (4):535.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  31.  7
    Richard Wallace (1993). Greek Mathematics Ian Mueller (Ed.): Peri Tōn Mathēmaton. (Apeiron XXIV, 4.) Pp. Vii + 251. Edmonton: Academic Printing and Publishing, 1991. $54.95 (Paper. $23.95). [REVIEW] The Classical Review 43 (02):410-412.
  32.  7
    J. A. Smith (1923). Review of T. Heath, A History of Greek Mathematics. [REVIEW] The Classical Review 37 (3-4):69-71.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  33.  7
    Ivor Bulmer-Thomas (1980). Greek Mathematics Árpad Szabó: The Beginnings of Greek Mathematics. (Synthese Historical Library, 17.) Pp. 358. Dordrecht (Holland), Boston (U.S.A.): 1978. Fl. 100, U.S.$47.50. [REVIEW] The Classical Review 30 (01):123-124.
  34.  7
    D'Arcy Wentworth Thompson (1940). Selections From Greek Mathematics Ivor Thomas : Selections Illustrating the History of Greek Mathematics. With an English Translation. In Two Volumes. I. From Thales to Euclid. Pp. Xvi+505. (Loeb Classical Library.) London: Heinemann, 1939. Cloth, 10s. (Leather, 12s. 6d.). [REVIEW] The Classical Review 54 (3):149-150.
  35.  7
    F. P. White (1931). A Manual of Greek Mathematics. By Sir Thomas L. Heath. Pp. Xvi + 552. Oxford: Clarendon Press, 1931. 15s. The Classical Review 45 (05):198-199.
  36.  6
    Ivor Bulmer-Thomas (1991). Apollonius From the Arabic G. J. Toomer (Ed.): Apollonius, Conies, Books V to VII. The Arabic Translation of the Lost Greek Original in the Version of the Banū Mūsā. (Sources in the History of Mathematics and Physical Sciences, 9.) 2 Vols. Vol. I: Pp. Xcv + 547; Vol. II: Pp. 341; 288 Mathematical Figures. New York, Berlin, Heidelberg, London, Paris, Tokyo and Hong Kong: Springer Verlag, 1990. £85 for the 2 Vols. [REVIEW] The Classical Review 41 (02):313-314.
  37.  7
    D. R. Dicks (1968). Greek Mathematics Salomon Bochner: The Role of Mathematics in the Rise of Science. Pp. X+386. Princeton: University Press, 1966. Cloth, 72s. [REVIEW] The Classical Review 18 (03):345-348.
  38.  6
    G. L. Huxley (2004). A Conference on Ancient Science C. J. Tuplin, T. E. Rihll (Edd.): Science and Mathematics in Ancient Greek Culture (with a Foreword by L. Wolpert). Pp. XVI + 379, Ills. Oxford: Oxford University Press, 2002. Cased, £50. Isbn: 0-19-815248-. [REVIEW] The Classical Review 54 (01):82-.
  39.  1
    George Sarton (1931). A Manual Of Greek Mathematics By Thomas L. Heath. [REVIEW] Isis: A Journal of the History of Science 16:450-451.
    Direct download  
     
    Export citation  
     
    My bibliography  
  40.  2
    Richard Wallace (2003). The Shaping of Deduction in Greek Mathematics/Prolegomena Mathematica: From Apollonius of Perga to Late Neoplatonism/The Mathematics of Plato's Academy/Biologie (Book). Journal of Hellenic Studies 123:259-260.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  41.  1
    Alain Bernard (2003). Ancient Rhetoric and Greek Mathematics: A Response to a Modern Historiographical Dilemma. Science in Context 16 (3).
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  42. J. L. Berggren (2003). Reviel Netz.The Shaping of Deduction in Greek Mathematics: A Study in Cognitive History. Cambridge: Cambridge University Press, 1999.David Fowler.The Mathematics of Plato’s Academy: A New Reconstruction. 2nd Edition. Oxford: Oxford University Press, 1999. [REVIEW] Isis 94 (1):134-136.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  43. Michael N. Fried (2011). Reviel Netz.Ludic Proof: Greek Mathematics and the Alexandrian Aesthetic. Xv + 255 Pp., Figs., Bibl., Index. Cambridge/New York: Cambridge University Press, 2009. £59. [REVIEW] Isis 102 (4):753-754.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  44. S. Gaukroger (1980). SZABO, A., "The Beginnings of Greek Mathematics". [REVIEW] Australasian Journal of Philosophy 58:311.
    No categories
     
    Export citation  
     
    My bibliography  
  45. J. K. Heiberg, P. Gardner, R. Blomfield & Charles Singer (1923). Mathematics and Physical Science in Classical AntiquityGreek Art and Architecture: Their Legacy to UsGreek Biology and Greek Medicine. Journal of Hellenic Studies 43:217.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  46. M. Leng & J. R. Brown (2001). Reviel Netz, the Shaping of Deduction in Greek Mathematics. [REVIEW] Philosophia Mathematica 9 (2):248-251.
    No categories
     
    Export citation  
     
    My bibliography  
  47. G. E. R. Lloyd (1998). Techniques and Dialectic: Method in Greek and Chinese Mathematics and Medicine. In Jyl Gentzler (ed.), Method in Ancient Philosophy. Oxford University Press 354--70.
    No categories
     
    Export citation  
     
    My bibliography  
  48. G. Loria (1923). HEATH, TH. - A history of greek mathematics. [REVIEW] Scientia 17 (34):119.
    No categories
    Translate
     
     
    Export citation  
     
    My bibliography  
  49. G. A. Miller (1926). Weak points in Greek Mathematics. Scientia 20 (39):317.
    No categories
    Translate
     
     
    Export citation  
     
    My bibliography  
  50. A. G. Molland (1981). SZABO, Á.: "The Beginnings of Greek Mathematics". [REVIEW] British Journal for the Philosophy of Science 32:306.
     
    Export citation  
     
    My bibliography  
1 — 50 / 1000