12 found
Sort by:
  1. Max A. Freund (2007). A Two Dimensional Tense-Modal Sortal Logic. Journal of Philosophical Logic 36 (5):571 - 598.
    We consider a formal language whose logical syntax involves both modal and tense propositional operators, as well as sortal quantifiers, sortal identities and (second order) quantifiers over sortals. We construct an intensional semantics for the language and characterize a formal logical system which we prove to be sound and complete with respect to the semantics. Conceptualism is the philosophical background of the semantic system.
    Direct download (5 more)  
     
    My bibliography  
     
    Export citation  
  2. Max A. Freund (2007). Review of Uwe Meixner, The Theory of Ontic Modalities. [REVIEW] Notre Dame Philosophical Reviews 2007 (7).
    No categories
    Direct download  
     
    My bibliography  
     
    Export citation  
  3. Max A. Freund (2005). Conceptualismo realista y computabilidad (Realist Conceptualism and Computability). Crítica 37 (111):3 - 38.
    El artículo formula una interpretación de la computabilidad desde la perspectiva del conceptualismo realista. En esta interpretación, la noción central es la de concepto computable, el cual se entiende como cierto tipo de capacidad cognitiva. Aquí se muestra cómo difiere esa interpretación conceptualista de la clásica, denominada teoría de la computabilidad efectiva, en la cual el concepto fundamental es el de algoritmo; también se discute la relación entre estas dos interpretaciones. La discusión explora las consecuencias de la idea de que (...)
    No categories
    Translate to English
    | Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  4. Max A. Freund (2004). A Modal Sortal Logic. Journal of Philosophical Logic 33 (3):237-260.
    An intensional semantic system for languages containing, in their logical syntax, sortal quantifiers, sortal identities, (second-order) quantifiers over sortals and the necessity operator is constructed. This semantics provides non-standard assignments to predicate expressions, which diverge in kind from the entities assigned to sortal terms by the same semantic system. The nature of the entities assigned to predicate expressions shows, at the same time, that there is an internal semantic connection between those expressions and sortal terms. A formal logical system is (...)
    Direct download (7 more)  
     
    My bibliography  
     
    Export citation  
  5. Max A. Freund, A. Modal Sortal Logic, R. Logic, Luca Alberucci, Vincenzo Salipante & On Modal (2004). David J. Anderson and Edward N. Zalta/Frege, Boolos, and Logical Objects 1–26 Michael Glanzberg/A Contextual-Hierarchical Approach to Truth and the Liar Paradox 27–88 James Hawthorne/Three Models of Sequential Belief Updat. [REVIEW] Journal of Philosophical Logic 33:639-640.
    No categories
    Direct download  
     
    My bibliography  
     
    Export citation  
  6. Max A. Freund (2001). A Temporal Logic for Sortals. Studia Logica 69 (3):351-380.
    With the past and future tense propositional operators in its syntax, a formal logical system for sortal quantifiers, sortal identity and (second order) quantification over sortal concepts is formulated. A completeness proof for the system is constructed and its absolute consistency proved. The completeness proof is given relative to a notion of logical validity provided by an intensional semantic system, which assumes an approach to sortals from a modern form of conceptualism.
    Direct download (7 more)  
     
    My bibliography  
     
    Export citation  
  7. Max A. Freund (2000). A Complete and Consistent Formal System for Sortals. Studia Logica 65 (3):367-381.
    A formal logical system for sortal quantifiers, sortal identity and (second order) quantification over sortal concepts is formulated. The absolute consistency of the system is proved. A completeness proof for the system is also constructed. This proof is relative to a concept of logical validity provided by a semantics, which assumes as its philosophical background an approach to sortals from a modern form of conceptualism.
    Direct download (7 more)  
     
    My bibliography  
     
    Export citation  
  8. Max A. Freund (1996). Semantics for Two Second-Order Logical Systems: $\Equiv$ RRC* and Cocchiarella's RRC. Notre Dame Journal of Formal Logic 37 (3):483-505.
    We develop a set-theoretic semantics for Cocchiarella's second-order logical system . Such a semantics is a modification of the nonstandard sort of second-order semantics described, firstly, by Simms and later extended by Cocchiarella. We formulate a new second order logical system and prove its relative consistency. We call such a system and construct its set-theoretic semantics. Finally, we prove completeness theorems for proper normal extensions of the two systems with respect to certain notions of validity provided by the semantics.
    Direct download (4 more)  
     
    My bibliography  
     
    Export citation  
  9. Max A. Freund (1994). The Relative Consistency of System RRC* and Some of its Extensions. Studia Logica 53 (3):351 - 360.
    We present a relative consistency proof for second order systemRRC* and for certain important extensions of this system. The proof proceeds as follows: we prove first the equiconsistency of the strongest of such extensions (viz., systemH RRC*+(/CP**)) with second order systemT * . Now, N. Cocchiarella has shown thatT * is relatively consistent to systemT*+Ext; clearly, it follows thatH RRC*+(/CP**) is relatively consistent toT*+E xt. As an immediate consequence, the relative consistency ofRRC* and the other extensions also follows, being all (...)
    Direct download (5 more)  
     
    My bibliography  
     
    Export citation  
  10. Max A. Freund (1992). Un sistema lógico de segundo orden conceptualista con operadores lambda ramificados. Crítica 24 (72):47 - 72.
    No categories
    Translate to English
    | Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  11. Max A. Freund (1991). Consideraciones lógico-epistémicas relativas a una forma de conceptualismo ramificado. Crítica 23 (69):3 - 25.
    No categories
    Translate to English
    | Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  12. Max A. Freund (1982). Lesniewski, Quine y Geach: un análisis de sus demostraciones con respecto a la restricción del axioma V del sistema de Frege. Revista de Filosofía de la Universidad de Costa Rica 52:177-180.
    No categories
    Translate to English
    | Direct download  
     
    My bibliography  
     
    Export citation