13 found
Order:
Disambiguations:
Michael J. Beeson [7]Michael Beeson [7]
  1. Michael J. Beeson (1976). Derived Rules of Inference Related to the Continuity of Effective Operations. Journal of Symbolic Logic 41 (2):328-336.
    Direct download (6 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  2.  8
    Michael J. Beeson (1975). The Nonderivability in Intuitionistic Formal Systems of Theorems on the Continuity of Effective Operations. Journal of Symbolic Logic 40 (3):321-346.
  3.  8
    Michael Beeson (2015). A Constructive Version of Tarski's Geometry. Annals of Pure and Applied Logic 166 (11):1199-1273.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  4.  6
    Michael J. Beeson (1977). Principles of Continuous Choice and Continuity of Functions in Formal Systems for Constructive Mathematics. Annals of Mathematical Logic 12 (3):249-322.
  5.  12
    Michael Beeson (1976). The Unprovability in Intuitionistic Formal Systems of the Continuity of Effective Operations on the Reals. Journal of Symbolic Logic 41 (1):18-24.
  6.  2
    Michael Beeson, Robert Veroff & Larry Wos (2005). Double-Negation Elimination in Some Propositional Logics. Studia Logica 80 (2-3):195-234.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  7.  7
    Michael Beeson (2012). Logic of Ruler and Compass Constructions. In S. Barry Cooper (ed.), How the World Computes. 46--55.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  8.  26
    Michael Beeson, Robert Veroff & Larry Wos (2005). Double-Negation Elimination in Some Propositional Logics. Studia Logica 80 (2-3):195 - 234.
    This article answers two questions (posed in the literature), each concerning the guaranteed existence of proofs free of double negation. A proof is free of double negation if none of its deduced steps contains a term of the formn(n(t)) for some term t, where n denotes negation. The first question asks for conditions on the hypotheses that, if satisfied, guarantee the existence of a double-negation-free proof when the conclusion is free of double negation. The second question asks about the existence (...)
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography  
  9.  18
    Michael Beeson (1978). Some Relations Between Classical and Constructive Mathematics. Journal of Symbolic Logic 43 (2):228-246.
  10.  9
    Michael Beeson (1978). A Type-Free Gödel Interpretation. Journal of Symbolic Logic 43 (2):213-227.
    Direct download (6 more)  
     
    Export citation  
     
    My bibliography  
  11.  7
    Michael J. Beeson (1991). Book Review: A. S. Troelstra and D. Van Dalen. Constructivism in Mathematics , Vols. 1 And. [REVIEW] Notre Dame Journal of Formal Logic 32 (2):320-322.
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography  
  12.  1
    Michael J. Beeson (1990). Review: R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden, J. T. Sasaki, S. F. Smith, Implementing Mathematics with the Nuprl Proof Development System. [REVIEW] Journal of Symbolic Logic 55 (3):1299-1302.
  13. Michael J. Beeson (1986). Review: Larry Wos, Ross Overbeek, Ewing Lusk, Jim Boyle, Automated Reasoning. Introduction and Applications. [REVIEW] Journal of Symbolic Logic 51 (2):464-465.