13 found
Sort by:
  1. Michael Stob (2006). Wolf Robert S.. A Tour Through Mathematical Logic, The Carus Mathematical Monographs, Number 30. The Mathematical Association of America, Washington, DC, 2005, Xv+ 397 Pp. [REVIEW] Bulletin of Symbolic Logic 12 (1):141-142.
    No categories
    Direct download  
     
    My bibliography  
     
    Export citation  
  2. Julia F. Knight & Michael Stob (2000). Computable Boolean Algebras. Journal of Symbolic Logic 65 (4):1605-1623.
    Direct download (6 more)  
     
    My bibliography  
     
    Export citation  
  3. Daniel Osherson, Edward E. Smith, Tracy S. Myers, Eldar Shafir & Michael Stob (1994). Extrapolating Human Probability Judgment. Theory and Decision 36 (2):103-129.
    No categories
    Direct download (4 more)  
     
    My bibliography  
     
    Export citation  
  4. Rod Downey & Michael Stob (1993). Friedberg Splittings of Recursively Enumerable Sets. Annals of Pure and Applied Logic 59 (3):175-199.
    Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  5. Rod Downey & Michael Stob (1993). Splitting Theorems in Recursion Theory. Annals of Pure and Applied Logic 65 (1):1-106.
    Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  6. Daniel N. Osherson, Joshua Stern, Ormond Wilkie, Michael Stob & Edward E. Smith (1991). Default Probability. Cognitive Science 15 (2):251-269.
    Direct download (5 more)  
     
    My bibliography  
     
    Export citation  
  7. Daniel N. Osherson, Michael Stob & Scott Weinstein (1991). A Universal Inductive Inference Machine. Journal of Symbolic Logic 56 (2):661-672.
    A paradigm of scientific discovery is defined within a first-order logical framework. It is shown that within this paradigm there exists a formal scientist that is Turing computable and universal in the sense that it solves every problem that any scientist can solve. It is also shown that universal scientists exist for no regular logics that extend first-order logic and satisfy the Löwenheim-Skolem condition.
    Direct download (5 more)  
     
    My bibliography  
     
    Export citation  
  8. Daniel N. Osherson, Michael Stob & Scott Weinstein (1988). Mechanical Learners Pay a Price for Bayesianism. Journal of Symbolic Logic 53 (4):1245-1251.
    Direct download (6 more)  
     
    My bibliography  
     
    Export citation  
  9. Michael Stob (1985). Major Subsets and the Lattice of Recursively Enumerable Sets. In Anil Nerode & Richard A. Shore (eds.), Recursion Theory. American Mathematical Society. 107.
    No categories
    Direct download  
     
    My bibliography  
     
    Export citation  
  10. Wolfgang Maass & Michael Stob (1983). The Intervals of the Lattice of Recursively Enumerable Sets Determined by Major Subsets. Annals of Pure and Applied Logic 24 (2):189-212.
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  11. Michael Stob (1983). Wtt-Degrees and T-Degrees of R.E. Sets. Journal of Symbolic Logic 48 (4):921-930.
    We use some simple facts about the wtt-degrees of r.e. sets together with a construction to answer some questions concerning the join and meet operators in the r.e. degrees. The construction is that of an r.e. Turing degree a with just one wtt-degree in a such that a is the join of a minimal pair of r.e. degrees. We hope to illustrate the usefulness of studying the stronger reducibility orderings of r.e. sets for providing information about Turing reducibility.
    Direct download (5 more)  
     
    My bibliography  
     
    Export citation  
  12. Daniel N. Osherson, Michael Stob & Scott Weinstein (1982). Ideal Learning Machines. Cognitive Science 6 (3):277-290.
    Direct download (4 more)  
     
    My bibliography  
     
    Export citation  
  13. Michael Stob (1982). Index Sets and Degrees of Unsolvability. Journal of Symbolic Logic 47 (2):241-248.
    Direct download (6 more)  
     
    My bibliography  
     
    Export citation