11 found
Sort by:
  1. Mikhail G. Katz & Thomas Mormann, Infinitesimals and Other Idealizing Completions in Neo-Kantian Philosophy of Mathematics.
    We seek to elucidate the philosophical context in which the so-called revolution of rigor in inifinitesimal calculus and mathematical analysis took place. Some of the protagonists of the said revolution were Cauchy, Cantor, Dedekind, and Weierstrass. The dominant current of philosophy in Germany at that time was neo-Kantianism. Among its various currents, the Marburg school (Cohen, Natorp, Cassirer, and others) was the one most interested in matters scientific and mathematical. Our main thesis is that Marburg Neo-Kantian philosophy formulated a sophisticated (...)
    Translate to English
    |
     
    My bibliography  
     
    Export citation  
  2. Karin U. Katz, Mikhail G. Katz & Taras Kudryk (2014). Toward a Clarity of the Extreme Value Theorem. Logica Universalis 8 (2):193-214.
    We apply a framework developed by C. S. Peirce to analyze the concept of clarity, so as to examine a pair of rival mathematical approaches to a typical result in analysis. Namely, we compare an intuitionist and an infinitesimal approaches to the extreme value theorem. We argue that a given pre-mathematical phenomenon may have several aspects that are not necessarily captured by a single formalisation, pointing to a complementarity rather than a rivalry of the approaches.
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  3. Piotr Błaszczyk, Mikhail G. Katz & David Sherry (2013). Ten Misconceptions From the History of Analysis and Their Debunking. Foundations of Science 18 (1):43-74.
    The widespread idea that infinitesimals were “eliminated” by the “great triumvirate” of Cantor, Dedekind, and Weierstrass is refuted by an uninterrupted chain of work on infinitesimal-enriched number systems. The elimination claim is an oversimplification created by triumvirate followers, who tend to view the history of analysis as a pre-ordained march toward the radiant future of Weierstrassian epsilontics. In the present text, we document distortions of the history of analysis stemming from the triumvirate ideology of ontological minimalism, which identified the continuum (...)
    Direct download (9 more)  
     
    My bibliography  
     
    Export citation  
  4. Mikhail G. Katz, David M. Schaps & Steven Shnider (2013). Almost Equal: The Method of Adequality From Diophantus to Fermat and Beyond. Perspectives on Science 21 (3):283-324.
    Adequality, or παρισóτης (parisotēs) in the original Greek of Diophantus 1 , is a crucial step in Fermat’s method of finding maxima, minima, tangents, and solving other problems that a modern mathematician would solve using infinitesimal calculus. The method is presented in a series of short articles in Fermat’s collected works (1891, pp. 133–172). The first article, Methodus ad Disquirendam Maximam et Minimam 2 , opens with a summary of an algorithm for finding the maximum or minimum value of an (...)
    Direct download (4 more)  
     
    My bibliography  
     
    Export citation  
  5. Mikhail G. Katz & David Sherry (2013). Leibniz's Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes From Berkeley to Russell and Beyond. [REVIEW] Erkenntnis 78 (3):571-625.
    Many historians of the calculus deny significant continuity between infinitesimal calculus of the seventeenth century and twentieth century developments such as Robinson’s theory. Robinson’s hyperreals, while providing a consistent theory of infinitesimals, require the resources of modern logic; thus many commentators are comfortable denying a historical continuity. A notable exception is Robinson himself, whose identification with the Leibnizian tradition inspired Lakatos, Laugwitz, and others to consider the history of the infinitesimal in a more favorable light. Inspite of his Leibnizian sympathies, (...)
    Direct download (7 more)  
     
    My bibliography  
     
    Export citation  
  6. Mikhail G. Katz & David Tall (2013). A Cauchy-Dirac Delta Function. Foundations of Science 18 (1):107-123.
    The Dirac δ function has solid roots in nineteenth century work in Fourier analysis and singular integrals by Cauchy and others, anticipating Dirac’s discovery by over a century, and illuminating the nature of Cauchy’s infinitesimals and his infinitesimal definition of δ.
    Direct download (7 more)  
     
    My bibliography  
     
    Export citation  
  7. Thomas Mormann & Mikhail G. Katz (2013). Infinitesimals as an Issue of Neo-Kantian Philosophy of Science. HOPOS 3(2), The Journal of the International Society for the History of Phiilosophy of Science, 236 - 280 (2):236-280.
    We seek to elucidate the philosophical context in which one of the most important conceptual transformations of modern mathematics took place, namely the so-called revolution in rigor in infinitesimal calculus and mathematical analysis. Some of the protagonists of the said revolution were Cauchy, Cantor, Dedekind,and Weierstrass. The dominant current of philosophy in Germany at the time was neo-Kantianism. Among its various currents, the Marburg school (Cohen, Natorp, Cassirer, and others) was the one most interested in matters scientific and mathematical. Our (...)
    Direct download (4 more)  
     
    My bibliography  
     
    Export citation  
  8. Alexandre Borovik, Renling Jin & Mikhail G. Katz (2012). An Integer Construction of Infinitesimals: Toward a Theory of Eudoxus Hyperreals. Notre Dame Journal of Formal Logic 53 (4):557-570.
    A construction of the real number system based on almost homomorphisms of the integers $\mathbb {Z}$ was proposed by Schanuel, Arthan, and others. We combine such a construction with the ultrapower or limit ultrapower construction to construct the hyperreals out of integers. In fact, any hyperreal field, whose universe is a set, can be obtained by such a one-step construction directly out of integers. Even the maximal (i.e., On -saturated) hyperreal number system described by Kanovei and Reeken (2004) and independently (...)
    Direct download (5 more)  
     
    My bibliography  
     
    Export citation  
  9. Alexandre Borovik & Mikhail G. Katz (2012). Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus. Foundations of Science 17 (3):245-276.
    Cauchy’s contribution to the foundations of analysis is often viewed through the lens of developments that occurred some decades later, namely the formalisation of analysis on the basis of the epsilon-delta doctrine in the context of an Archimedean continuum. What does one see if one refrains from viewing Cauchy as if he had read Weierstrass already? One sees, with Felix Klein, a parallel thread for the development of analysis, in the context of an infinitesimal-enriched continuum. One sees, with Emile Borel, (...)
    Direct download (7 more)  
     
    My bibliography  
     
    Export citation  
  10. Vladimir Kanovei, Mikhail G. Katz & Thomas Mormann (2012). Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics. Foundations of Science 18 (2):259-296.
    We examine some of Connes’ criticisms of Robinson’s infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes’ own earlier work in functional analysis. Connes described the hyperreals as both a “virtual theory” and a “chimera”, yet acknowledged that his argument relies on the transfer principle. We analyze Connes’ “dart-throwing” thought experiment, but reach an opposite conclusion. In S , all definable sets of reals are (...)
    Direct download (7 more)  
     
    My bibliography  
     
    Export citation  
  11. Karin U. Katz & Mikhail G. Katz (2011). Cauchy's Continuum. Perspectives on Science 19 (4):426-452.
    One of the most influential scientific treatises in Cauchy's era was J.-L. Lagrange's Mécanique Analytique, the second edition of which came out in 1811, when Cauchy was barely out of his teens. Lagrange opens his treatise with an unequivocal endorsement of infinitesimals. Referring to the system of infinitesimal calculus, Lagrange writes:Lorsqu'on a bien conçu l'esprit de ce système, et qu'on s'est convaincu de l'exactitude de ses résultats par la méthode géométrique des premières et dernières raisons, ou par la méthode analytique (...)
    Direct download (5 more)  
     
    My bibliography  
     
    Export citation