See also:
Profile: Paolo Maffezioli (University of Groningen)
  1. David R. Gilbert & Paolo Maffezioli (forthcoming). Modular Sequent Calculi for Classical Modal Logics. Studia Logica:1-43.
    This paper develops sequent calculi for several classical modal logics. Utilizing a polymodal translation of the standard modal language, we are able to establish a base system for the minimal classical modal logic E from which we generate extensions (to include M, C, and N) in a modular manner. Our systems admit contraction and cut admissibility, and allow a systematic proof-search procedure of formal derivations.
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  2. Paolo Maffezioli & Alberto Naibo (forthcoming). Proof Theory of Epistemic Logic of Programs. Logic and Logical Philosophy.
    A combination of epistemic logic and dynamic logic of programs is presented. Although rich enough to formalize some simple game-theoretic scenarios, its axiomatization is problematic as it leads to the paradoxical conclusion that agents are omniscient. A cut-free labelled Gentzen-style proof system is then introduced where knowledge and action, as well as their combinations, are formulated as rules of inference, rather than axioms. This provides a logical framework for reasoning about games in a modular and systematic way, and to give (...)
    Direct download (7 more)  
     
    My bibliography  
     
    Export citation  
  3. Paolo Maffezioli, Alberto Naibo & Sara Negri (2013). The Church–Fitch Knowability Paradox in the Light of Structural Proof Theory. Synthese 190 (14):2677-2716.
    Anti-realist epistemic conceptions of truth imply what is called the knowability principle: All truths are possibly known. The principle can be formalized in a bimodal propositional logic, with an alethic modality ${\diamondsuit}$ and an epistemic modality ${\mathcal{K}}$ , by the axiom scheme ${A \supset \diamondsuit \mathcal{K} A}$ (KP). The use of classical logic and minimal assumptions about the two modalities lead to the paradoxical conclusion that all truths are known, ${A \supset \mathcal{K} A}$ (OP). A Gentzen-style reconstruction of the Church–Fitch (...)
    Direct download (6 more)  
     
    My bibliography  
     
    Export citation