30 found
Order:
  1.  1
    Peter G. Hinman (1978). Recursion-Theoretic Hierarchies. Springer-Verlag.
    No categories
    Direct download  
     
    Export citation  
     
    My bibliography   61 citations  
  2.  13
    Peter G. Hinman (2012). A Survey of Mučnik and Medvedev Degrees. Bulletin of Symbolic Logic 18 (2):161-229.
    We survey the theory of Mucnik and Medvedev degrees of subsets of $^{\omega}{\omega}$with particular attention to the degrees of $\Pi_{1}^{0}$ subsets of $^{\omega}2$. Sections 1-6 present the major definitions and results in a uniform notation. Sections 7-6 present proofs, some more complete than others, of the major results of the subject together with much of the required background material.
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography   5 citations  
  3.  4
    Peter G. Hinman (1969). Some Applications of Forcing to Hierarchy Problems in Arithmetic. Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 15 (20-22):341-352.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  4.  1
    Douglas Cenzer & Peter G. Hinman (2003). Density of the Medvedev Lattice of Π0 1 Classes. Archive for Mathematical Logic 42 (6):583-600.
    The partial ordering of Medvedev reducibility restricted to the family of Π0 1 classes is shown to be dense. For two disjoint computably enumerable sets, the class of separating sets is an important example of a Π0 1 class, which we call a ``c.e. separating class''. We show that there are no non-trivial meets for c.e. separating classes, but that the density theorem holds in the sublattice generated by the c.e. separating classes.
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography   3 citations  
  5.  1
    Douglas Cenzer & Peter G. Hinman (2008). Degrees of Difficulty of Generalized R.E. Separating Classes. Archive for Mathematical Logic 46 (7-8):629-647.
    Important examples of $\Pi^0_1$ classes of functions $f \in {}^\omega\omega$ are the classes of sets (elements of ω 2) which separate a given pair of disjoint r.e. sets: ${\mathsf S}_2(A_0, A_1) := \{f \in{}^\omega2 : (\forall i < 2)(\forall x \in A_i)f(x) \neq i\}$ . A wider class consists of the classes of functions f ∈ ω k which in a generalized sense separate a k-tuple of r.e. sets (not necessarily pairwise disjoint) for each k ∈ ω: ${\mathsf S}_k(A_0,\ldots,A_k-1) := (...)
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  6. Peter G. Hinman (2007). Fundamentals of Mathematical Logic. Bulletin of Symbolic Logic 13 (3):363-365.
     
    Export citation  
     
    My bibliography   1 citation  
  7.  11
    Peter G. Hinman, Jaegwon Kim & Stephen P. Stich (1968). Logical Truth Revisited. Journal of Philosophy 65 (17):495-500.
    No categories
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography   3 citations  
  8.  10
    Peter A. Cholak & Peter G. Hinman (1994). Iterated Relative Recursive Enumerability. Archive for Mathematical Logic 33 (5):321-346.
    A result of Soare and Stob asserts that for any non-recursive r.e. setC, there exists a r.e.[C] setA such thatA⊕C is not of r.e. degree. A setY is called [of]m-REA (m-REA[C] [degree] iff it is [Turing equivalent to] the result of applyingm-many iterated ‘hops’ to the empty set (toC), where a hop is any function of the formX→X ⊕W e X . The cited result is the special casem=0,n=1 of our Theorem. Form=0,1, and any (m+1)-REA setC, ifC is not ofm-REA (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography  
  9.  3
    Peter G. Hinman (1969). Some Applications of Forcing to Hierarchy Problems in Arithmetic. Mathematical Logic Quarterly 15 (20‐22):341-352.
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  10.  10
    Andreas Blass, Louise Hay & Peter G. Hinman (1986). Meeting of the Association for Symbolic Logic: Chicago, 1985. Journal of Symbolic Logic 51 (2):507-510.
  11.  6
    Peter G. Hinman (1973). Degrees of Continuous Functionals. Journal of Symbolic Logic 38 (3):393-395.
    The partial order structure of degrees of unsolvability represented by continuous type-2 functionals is a proper extension of the partial order structure of type-1 degrees.
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography  
  12.  2
    Peter G. Hinman & Theodore A. Slaman (1991). Jump Embeddings in the Turing Degrees. Journal of Symbolic Logic 56 (2):563-591.
  13.  2
    Peter G. Hinman (1968). Review: L. Bukowsky, K. Prikry, Some Metamathematical Properties of Measurable Cardinals. [REVIEW] Journal of Symbolic Logic 33 (3):476-476.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  14.  2
    Peter G. Hinman (1971). Review: D. A. Clarke, Hierarchies of Predicates of Finite Types. [REVIEW] Journal of Symbolic Logic 36 (1):146-147.
  15.  1
    Peter G. Hinman (1993). Review: Luis E. Sanchis, Recursive Functionals. [REVIEW] Journal of Symbolic Logic 58 (4):1468-1469.
    Direct download  
     
    Export citation  
     
    My bibliography  
  16.  2
    Peter G. Hinman (1990). Review: Piergiorgio Odifreddi, Classical Recursion Theory. The Theory of Functions and Sets of Natural Numbers. [REVIEW] Journal of Symbolic Logic 55 (3):1307-1308.
  17.  1
    Peter G. Hinman (2001). Review: P. G. Odifreddi, Classical Recursion Theory. [REVIEW] Bulletin of Symbolic Logic 7 (1):71-73.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  18.  1
    Peter G. Hinman (1968). Review: Petr Vopenka, Die Konstruktion von Modellen der Mengenlehre Nach der Methode der Ultraprodukte. [REVIEW] Journal of Symbolic Logic 33 (3):475-476.
    Translate
      Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  19.  1
    Peter G. Hinman (1986). Review: Melvin Fitting, Fundamentals of Generalized Recursion Theory. [REVIEW] Journal of Symbolic Logic 51 (4):1078-1079.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  20. Douglas Cenzer & Peter G. Hinman (2003). Density of the Medvedev Lattice of Π [Sup0][Sub1]. Archive for Mathematical Logic 42 (6):583-600.
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  21.  3
    Jens Erik Fenstad & Peter G. Hinman (eds.) (1974). Generalized Recursion Theory. New York,American Elsevier Pub. Co..
    Provability, Computability and Reflection.
    Direct download  
     
    Export citation  
     
    My bibliography  
  22. Peter G. Hinman (1972). Hierarchies of Effective Descriptive Set Theory. Journal of Symbolic Logic 37 (4):758-759.
    Direct download  
     
    Export citation  
     
    My bibliography  
  23. Peter G. Hinman (1972). [Omnibus Review]. Journal of Symbolic Logic 37 (2):409-410.
    Direct download  
     
    Export citation  
     
    My bibliography  
  24. Peter G. Hinman (1965). Review: A. D. Tajmanov, On a Class of Models, Closed with Respect to Direct Product. [REVIEW] Journal of Symbolic Logic 30 (2):253-254.
     
    Export citation  
     
    My bibliography  
  25. Peter G. Hinman (1984). Review: Dag Normann, Recursion on the Countable Functionals; Dag Normann, The Continuous Functionals; Computations, Recursions and Degrees. [REVIEW] Journal of Symbolic Logic 49 (2):668-670.
     
    Export citation  
     
    My bibliography  
  26. Peter G. Hinman (1965). Review: R. C. Lyndon, Existential Horn Sentences. [REVIEW] Journal of Symbolic Logic 30 (2):253-253.
     
    Export citation  
     
    My bibliography  
  27. Peter G. Hinman (1971). Review: Yiannis N. Moschovakis, Hyperanalytic Predicates; Thomas J. Grilliot, Hierarchies Based on Objects of Finite Type. [REVIEW] Journal of Symbolic Logic 36 (1):147-148.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  28. Peter G. Hinman (1973). Review: Z. I. Kozlova, The Axiom of Constructibility and Multiple Separability and Inseparability in the Classes of the Analytical Hierarchy. [REVIEW] Journal of Symbolic Logic 38 (3):529-530.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  29. G. H. Müller, Wolfgang Lenski & Peter G. Hinman (1987). [Omega]-Bibliography of Mathematical Logic.
     
    Export citation  
     
    My bibliography  
  30. P. Odifreddi & Peter G. Hinman (2001). REVIEWS-Classical Recursion Theory, Volume II. Bulletin of Symbolic Logic 7 (1):71-72.
     
    Export citation  
     
    My bibliography