12 found
Sort by:
Disambiguations:
Phokion G. Kolaitis [8]Phokion Kolaitis [4]
  1. Erich Grädel, Phokion Kolaitis, Libkin G., Marx Leonid, Spencer Maarten, Vardi Joel, Y. Moshe, Yde Venema & Scott Weinstein (2007). Finite Model Theory and its Applications. Springer.
    This book gives a comprehensive overview of central themes of finite model theory – expressive power, descriptive complexity, and zero-one laws – together with selected applications relating to database theory and artificial intelligence, especially constraint databases and constraint satisfaction problems. The final chapter provides a concise modern introduction to modal logic, emphasizing the continuity in spirit and technique with finite model theory. This underlying spirit involves the use of various fragments of and hierarchies within first-order, second-order, fixed-point, and infinitary logics (...)
    Translate to English
    | Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  2. Gregory Cherlin, Alan Dow, Yuri Gurevich, Leo Harrington, Ulrich Kohlenbach, Phokion Kolaitis, Leonid Levin, Michael Makkai, Ralph McKenzie & Don Pigozzi (2004). University of Illinois at Chicago, Chicago, IL, June 1–4, 2003. Bulletin of Symbolic Logic 10 (1).
    Direct download  
     
    My bibliography  
     
    Export citation  
  3. Joseph Y. Halpern, Robert Harper, Neil Immerman, Phokion G. Kolaitis, Moshe Y. Vardi & Victor Vianu (2001). On the Unusual Effectiveness of Logic in Computer Science. Bulletin of Symbolic Logic 7 (2):213-236.
    Direct download (7 more)  
     
    My bibliography  
     
    Export citation  
  4. Sergei Artemov, Sam Buss, Edmund Clarke Jr, Heinz Dieter Ebbinghaus, Hans Kamp, Phokion Kolaitis, Maarten de Rijke & Valeria de Paiva (1999). University of Sao Paulo (Sao Paulo), Brazil, July 28–31, 1998. Bulletin of Symbolic Logic 5 (3).
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  5. Jon Barwise, Howard S. Becker, Chi Tat Chong, Herbert B. Enderton, Michael Hallett, C. Ward Henson, Harold Hodes, Neil Immerman, Phokion Kolaitis & Alistair Lachlan (1998). Association for Symbolic Logic. Bulletin of Symbolic Logic 4 (4).
     
    My bibliography  
     
    Export citation  
  6. Erich Grädel, Phokion G. Kolaitis & Moshe Y. Vardi (1997). On the Decision Problem for Two-Variable First-Order Logic. Bulletin of Symbolic Logic 3 (1):53-69.
    We identify the computational complexity of the satisfiability problem for FO 2 , the fragment of first-order logic consisting of all relational first-order sentences with at most two distinct variables. Although this fragment was shown to be decidable a long time ago, the computational complexity of its decision problem has not been pinpointed so far. In 1975 Mortimer proved that FO 2 has the finite-model property, which means that if an FO 2 -sentence is satisfiable, then it has a finite (...)
    Direct download (6 more)  
     
    My bibliography  
     
    Export citation  
  7. Lauri Hella, Phokion G. Kolaitis & Kerkko Luosto (1997). How to Define a Linear Order on Finite Models. Annals of Pure and Applied Logic 87 (3):241-267.
    Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  8. Tomek Bartoszynski, Harvey Friedman, Geoffrey Hellman, Bakhadyr Khoussainov, Phokion G. Kolaitis, Richard Shore, Charles Steinhorn, Mirna Dzamonja, Itay Neeman & Slawomir Solecki (1996). 1995–1996 Annual Meeting of the Association for Symbolic Logic. Bulletin of Symbolic Logic 2 (4).
    Direct download  
     
    My bibliography  
     
    Export citation  
  9. Lauri Hella, Phokion G. Kolaitis & Kerkko Luosto (1996). Almost Everywhere Equivalence of Logics in Finite Model Theory. Bulletin of Symbolic Logic 2 (4):422-443.
    We introduce a new framework for classifying logics on finite structures and studying their expressive power. This framework is based on the concept of almost everywhere equivalence of logics, that is to say, two logics having the same expressive power on a class of asymptotic measure 1. More precisely, if L, L ′ are two logics and μ is an asymptotic measure on finite structures, then $\scr{L}\equiv _{\text{a.e.}}\scr{L}^{\prime}(\mu)$ means that there is a class C of finite structures with μ (C)=1 (...)
    Direct download (7 more)  
     
    My bibliography  
     
    Export citation  
  10. Phokion G. Kolaitis & Jouko A. Väänänen (1995). Generalized Quantifiers and Pebble Games on Finite Structures. Annals of Pure and Applied Logic 74 (1):23-75.
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  11. Phokion G. Kolaitis (1985). Canonical Forms and Hierarchies in Generalized Recursion Theory. In Anil Nerode & Richard A. Shore (eds.), Recursion Theory. American Mathematical Society. 42--139.
    No categories
    Direct download  
     
    My bibliography  
     
    Export citation  
  12. Phokion G. Kolaitis (1979). Recursion in a Quantifier Vs. Elementary Induction. Journal of Symbolic Logic 44 (2):235-259.
    Direct download (5 more)  
     
    My bibliography  
     
    Export citation