Search results for 'Quantum Mechanics' (try it on Scholar)

1000+ found
Order:
  1.  2
    Valia Allori (forthcoming). "How to Make Sense of Quantum Mechanics (and More): Fundamental Physical Theories and Primitive Ontology". In Ulf Edvinsson (ed.), The Mammoth Book of Quantum Mechanics Interpretations. Open Academic Press
    Quantum mechanics has always been regarded as, at best, puzzling, if not contradictory. The aim of the paper is to explore a particular approach to fundamental physical theories, the one based on the notion of primitive ontology. This approach, when applied to quantum mechanics, makes it a paradox-free theory.
  2. J. S. Bell (2004). Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy. Cambridge University Press.
    This book comprises all of John Bell's published and unpublished papers in the field of quantum mechanics, including two papers that appeared after the first edition was published. It also contains a preface written for the first edition, and an introduction by Alain Aspect that puts into context Bell's great contribution to the quantum philosophy debate. One of the leading expositors and interpreters of modern quantum theory, John Bell played a major role in the development of (...)
     
    Export citation  
     
    My bibliography   125 citations  
  3. Mauro Dorato & Matteo Morganti (2013). Grades of Individuality. A Pluralistic View of Identity in Quantum Mechanics and in the Sciences. Philosophical Studies 163 (3):591-610.
    This paper offers a critical assessment of the current state of the debate about the identity and individuality of material objects. Its main aim, in particular, is to show that, in a sense to be carefully specified, the opposition between the Leibnizian ‘reductionist’ tradition, based on discernibility, and the sort of ‘primitivism’ that denies that facts of identity and individuality must be analysable has become outdated. In particular, it is argued that—contrary to a widespread consensus—‘naturalised’ metaphysics supports both the acceptability (...)
    Direct download (8 more)  
     
    Export citation  
     
    My bibliography   4 citations  
  4.  92
    Carsten Held (forthcoming). Einstein’s Boxes: Incompleteness of Quantum Mechanics Without a Separation Principle. Foundations of Physics:1-17.
    Einstein made several attempts to argue for the incompleteness of quantum mechanics , not all of them using a separation principle. One unpublished example, the box parable, has received increased attention in the recent literature. Though the example is tailor-made for applying a separation principle and Einstein indeed applies one, he begins his discussion without it. An analysis of this first part of the parable naturally leads to an argument for incompleteness not involving a separation principle. I discuss (...)
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  5.  37
    Valia Allori (2015). Quantum Mechanics and Paradigm Shifts. Topoi 2015.
    It has been argued that the transition from classical to quantum mechanics is an example of a Kuhnian scientific revolution, in which there is a shift from the simple, intuitive, straightforward classical paradigm, to the quantum, convoluted, counterintuitive, amazing new quantum paradigm. In this paper, after having clarified what these quantum paradigms are supposed to be, I analyze whether they constitute a radical departure from the classical paradigm. Contrary to what is commonly maintained, I argue (...)
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography  
  6. Alastair Wilson (2012). Objective Probability in Everettian Quantum Mechanics. British Journal for the Philosophy of Science 64 (4):axs022.
    David Wallace has given a decision-theoretic argument for the Born Rule in the context of Everettian quantum mechanics (EQM). This approach promises to resolve some long-standing problems with probability in EQM, but it has faced plenty of resistance. One kind of objection (the ‘incoherence problem’) charges that the requisite notion of decision-theoretic uncertainty is unavailable in the Everettian picture, so that the argument cannot gain any traction; another kind of objection grants the proof’s applicability and targets the premises. (...)
    Direct download (9 more)  
     
    Export citation  
     
    My bibliography   2 citations  
  7. Michael Esfeld (2013). Ontic Structural Realism and the Interpretation of Quantum Mechanics. European Journal for Philosophy of Science 3 (1):19-32.
    This paper argues that ontic structural realism (OSR) faces a dilemma: either it remains on the general level of realism with respect to the structure of a given theory, but then it is, like epistemic structural realism, only a partial realism; or it is a complete realism, but then it has to answer the question how the structure of a given theory is implemented, instantiated or realized and thus has to argue for a particular interpretation of the theory in question. (...)
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography   2 citations  
  8. Henry P. Stapp (1993). Mind, Matter, and Quantum Mechanics. Springer-Verlag.
    In this book, which contains several of his key papers as well as new material, he focuses on the problem of consciousness and explains how quantum mechanics...
  9.  90
    D. J. Miller & Matt Farr, On the Possibility of Ontological Models of Quantum Mechanics.
    It is an unresolved question in quantum mechanics whether quantum states apply to individual quantum systems, or to ensembles of quantum systems. We show by way of a thought experiment that quantum states apply only to ensembles of quantum systems. A further unresolved question is whether quantum systems possess ontic states. If a quantum state is the state of an ensemble, as we claim, the answer to this question is that (...) states are not ontic. However, a notable recent result in quantum foundations shows that if there are any ontic states at all, then the quantum state must be ontic. Collectively, these two results imply that there are no ontic states. We examine the assumptions required for these results, and suggest that the retrospective effect on state preparations by entangling measurements provides good reason for relaxing the assumption of preparation independence at the ontic level. (shrink)
    Direct download  
     
    Export citation  
     
    My bibliography  
  10.  14
    Jean-Sébastien Boisvert & Louis Marchildon (2013). Absorbers in the Transactional Interpretation of Quantum Mechanics. Foundations of Physics 43 (3):294-309.
    The transactional interpretation of quantum mechanics, following the time-symmetric formulation of electrodynamics, uses retarded and advanced solutions of the Schrödinger equation and its complex conjugate to understand quantum phenomena by means of transactions. A transaction occurs between an emitter and a specific absorber when the emitter has received advanced waves from all possible absorbers. Advanced causation always raises the specter of paradoxes, and it must be addressed carefully. In particular, different devices involving contingent absorbers or various types (...)
    Direct download (6 more)  
     
    Export citation  
     
    My bibliography   2 citations  
  11.  7
    Arkady Plotnitsky & Andrei Khrennikov (forthcoming). Reality Without Realism: On the Ontological and Epistemological Architecture of Quantum Mechanics. Foundations of Physics:1-32.
    First, this article considers the nature of quantum reality and the concept of realism in quantum theory, in conjunction with the roles of locality, causality, and probability and statistics there. Second, it offers two interpretations of quantum mechanics, developed by the authors of this article, the second of which is also a different theory of quantum phenomena. Both of these interpretations are statistical. The first interpretation, by A. Plotnitsky, “the statistical Copenhagen interpretation,” is nonrealist, insofar (...)
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  12.  25
    Slobodan Perovic (2008). Why Were Two Theories (Matrix Mechanics and Wave Mechanics) Deemed Logically Distinct, and yet Equivalent, in Quantum Mechanics? In Christopher Lehrer (ed.), First Annual Conference in the Foundations and History of Quantum Physics. Max Planck Institute for History of Science
    A recent rethinking of the early history of Quantum Mechanics deemed the late 1920s agreement on the equivalence of Matrix Mechanics and Wave Mechanics, prompted by Schrödinger’s 1926 proof, a myth. Schrödinger supposedly failed to achieve the goal of proving isomorphism of the mathematical structures of the two theories, while only later developments in the early 1930s, especially the work of mathematician John von Neumman (1932) provided sound proof of equivalence. The alleged agreement about the Copenhagen (...)
    Direct download  
     
    Export citation  
     
    My bibliography  
  13.  34
    N. C. A. Da Costa & C. De Ronde (2014). Non-Reflexive Logical Foundation for Quantum Mechanics. Foundations of Physics 44 (12):1369-1380.
    On the one hand, non-reflexive logics are logics in which the principle of identity does not hold in general. On the other hand, quantum mechanics has difficulties regarding the interpretation of ‘particles’ and their identity, also known in the literature as ‘the problem of indistinguishable particles’. In this article, we will argue that non-reflexive logics can be a useful tool to account for such quantum indistinguishability. In particular, we will provide a particular non-reflexive logic that can help (...)
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  14.  92
    S. E. Perez-Bergliaffa, Gustavo E. Romero & H. Vucetich (1996). Axiomatic Foundations of Quantum Mechanics Revisited: The Case for Systems. International Journal of Theoretical Phyisics 35:1805-1819.
    We present an axiomatization of non-relativistic Quantum Mechanics for a system with an arbitrary number of components. The interpretation of our system of axioms is realistic and objective. The EPR paradox and its relation with realism is discussed in this framework. It is shown that there is no contradiction between realism and recent experimental results.
    Direct download  
     
    Export citation  
     
    My bibliography   2 citations  
  15. Valia Allori & Nino Zanghi (2008). On the Classical Limit of Quantum Mechanics. Foundations of Physics 10.1007/S10701-008-9259-4 39 (1):20-32.
    Contrary to the widespread belief, the problem of the emergence of classical mechanics from quantum mechanics is still open. In spite of many results on the ¯h → 0 asymptotics, it is not yet clear how to explain within standard quantum mechanics the classical motion of macroscopic bodies. In this paper we shall analyze special cases of classical behavior in the framework of a precise formulation of quantum mechanics, Bohmian mechanics, which contains (...)
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  16.  83
    Darrin W. Belousek (2005). Underdetermination, Realism, and Theory Appraisal: An Epistemological Reflection on Quantum Mechanics. [REVIEW] Foundations of Physics 35 (4):669-695.
    This paper examines the epistemological significance of the present situation of underdetermination in quantum mechanics. After analyzing this underdetermination at three levels---formal, ontological, and methodological---the paper considers implications for a number of variants of the thesis of scientific realism in fundamental physics and reassesses Lakatos‘ characterization of progress in physical theory in light of the present situation. Next, this paper considers the implications of underdetermination for Weinberg’s ‘‘dream of a final theory.’’ Finally, the paper concludes by suggesting how (...)
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  17.  68
    Slobodan Perovic (2006). Schrödinger's Interpretation of Quantum Mechanics and the Relevance of Bohr's Experimental Critique. Studies in History and Philosophy of Science Part B 37 (2):275-297.
    E. Schrödinger's ideas on interpreting quantum mechanics have been recently re-examined by historians and revived by philosophers of quantum mechanics. Such recent re-evaluations have focused on Schrödinger's retention of space–time continuity and his relinquishment of the corpuscularian understanding of microphysical systems. Several of these historical re-examinations claim that Schrödinger refrained from pursuing his 1926 wave-mechanical interpretation of quantum mechanics under pressure from the Copenhagen and Göttingen physicists, who misinterpreted his ideas in their dogmatic pursuit (...)
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   3 citations  
  18.  14
    Vladimir Garcia-Morales (2015). Quantum Mechanics and the Principle of Least Radix Economy. Foundations of Physics 45 (3):295-332.
    A new variational method, the principle of least radix economy, is formulated. The mathematical and physical relevance of the radix economy, also called digit capacity, is established, showing how physical laws can be derived from this concept in a unified way. The principle reinterprets and generalizes the principle of least action yielding two classes of physical solutions: least action paths and quantum wavefunctions. A new physical foundation of the Hilbert space of quantum mechanics is then accomplished and (...)
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  19.  17
    K. B. Wharton (2007). Time-Symmetric Quantum Mechanics. Foundations of Physics 37 (1):159-168.
    A time-symmetric formulation of nonrelativistic quantum mechanics is developed by applying two consecutive boundary conditions onto solutions of a time- symmetrized wave equation. From known probabilities in ordinary quantum mechanics, a time-symmetric parameter P0 is then derived that properly weights the likelihood of any complete sequence of measurement outcomes on a quantum system. The results appear to match standard quantum mechanics, but do so without requiring a time-asymmetric collapse of the wavefunction upon measurement, (...)
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   3 citations  
  20. Tomasz Bigaj (2007). Counterfactuals and Non-Locality of Quantum Mechanics: The Bedford–Stapp Version of the GHZ Theorem. Foundations of Science 12 (1):85-108.
    In the paper, the proof of the non-locality of quantum mechanics, given by Bedford and Stapp (1995), and appealing to the GHZ example, is analyzed. The proof does not contain any explicit assumption of realism, but instead it uses formal methods and techniques of the Lewis calculus of counterfactuals. To ascertain the validity of the proof, a formal semantic model for counterfactuals is constructed. With the help of this model it can be shown that the proof is faulty, (...)
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   2 citations  
  21.  12
    Mauro Dorato (forthcoming). Events and the Ontology of Quantum Mechanics. Topoi.
    In the first part of the paper I argue that an ontology of events is precise, flexible and general enough so as to cover the three main alternative formulations of quantum mechanics as well as theories advocating an antirealistic view of the wave function. Since these formulations advocate a primitive ontology of entities living in four-dimensional spacetime, they are good candidates to connect that quantum image with the manifest image of the world. However, to the extent that (...)
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  22.  73
    Carsten Held (2008). Axiomatic Quantum Mechanics and Completeness. Foundations of Physics 38 (8):707-732.
    The standard axiomatization of quantum mechanics (QM) is not fully explicit about the role of the time-parameter. Especially, the time reference within the probability algorithm (the Born Rule, BR) is unclear. From a probability principle P1 and a second principle P2 affording a most natural way to make BR precise, a logical conflict with the standard expression for the completeness of QM can be derived. Rejecting P1 is implausible. Rejecting P2 leads to unphysical results and to a conflict (...)
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography  
  23.  36
    Tomasz Bigaj (2012). Ungrounded Dispositions in Quantum Mechanics. Foundations of Science 17 (3):205-221.
    General metaphysical arguments have been proposed in favour of the thesis that all dispositions have categorical bases (Armstrong; Prior, Pargetter, Jackson). These arguments have been countered by equally general arguments in support of ungrounded dispositions (Molnar, Mumford). I believe that this controversy cannot be settled purely on the level of abstract metaphysical considerations. Instead, I propose to look for ungrounded dispositions in specific physical theories, such as quantum mechanics. I explain why non-classical properties such as spin are best (...)
    Direct download (6 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  24. Nicholas Maxwell (1976). Towards a Micro Realistic Version of Quantum Mechanics, Part I. Foundations of Physics 6 (3):275-292.
    This paper investigates the possibiity of developing a fully micro realistic version of elementary quantum mechanics. I argue that it is highly desirable to develop such a version of quantum mechanics, and that the failure of all current versions and interpretations of quantum mechanics to constitute micro realistic theories is at the root of many of the interpretative problems associated with quantum mechanics, in particular the problem of measurement. I put forward a (...)
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   2 citations  
  25.  66
    A. Kryukov (2011). Geometry of the Unification of Quantum Mechanics and Relativity of a Single Particle. Foundations of Physics 41 (1):129-140.
    The paper summarizes, generalizes and reveals the physical content of a recently proposed framework that unifies the standard formalisms of special relativity and quantum mechanics. The framework is based on Hilbert spaces H of functions of four space-time variables x,t, furnished with an additional indefinite inner product invariant under Poincaré transformations. The indefinite metric is responsible for breaking the symmetry between space and time variables and for selecting a family of Hilbert subspaces that are preserved under Galileo transformations. (...)
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography  
  26.  52
    L. S. F. Olavo (2004). Foundations of Quantum Mechanics: The Connection Between QM and the Central Limit Theorem. [REVIEW] Foundations of Physics 34 (6):891-935.
    In this paper we unravel the connection between the quantum mechanical formalism and the Central limit theorem (CLT). We proceed to connect the results coming from this theorem with the derivations of the Schrödinger equation from the Liouville equation, presented by ourselves in other papers. In those papers we had used the concept of an infinitesimal parameter δx that raised some controversy. The status of this infinitesimal parameter is then elucidated in the framework of the CLT. Finally, we use (...)
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography  
  27. Alex Byrne & N. Hall (1999). Chalmers on Consciousness and Quantum Mechanics. Philosophy of Science 66 (3):370-90.
    The textbook presentation of quantum mechanics, in a nutshell, is this. The physical state of any isolated system evolves deterministically in accordance with Schrödinger's equation until a "measurement" of some physical magnitude M (e.g. position, energy, spin) is made. Restricting attention to the case where the values of M are discrete, the system's pre-measurement state-vector f is a linear combination, or "superposition", of vectors f1, f2,... that individually represent states that..
    Direct download (8 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  28. Valia Allori (2013). On the Metaphysics of Quantum Mechanics. In Soazig Lebihan (ed.), Precis de la Philosophie de la Physique. Vuibert
    What is quantum mechanics about? The most natural way to interpret quantum mechanics realistically as a theory about the world might seem to be what is called wave function ontology: the view according to which the wave function mathematically represents in a complete way fundamentally all there is in the world. Erwin Schroedinger was one of the first proponents of such a view, but he dismissed it after he realized it led to macroscopic superpositions (if the (...)
    Translate
      Direct download  
     
    Export citation  
     
    My bibliography  
  29.  95
    Matthew J. Brown (2009). Relational Quantum Mechanics and the Determinacy Problem. British Journal for the Philosophy of Science 60 (4):679-695.
    Carlo Rovelli's relational interpretation of quantum mechanics holds that a system's states or the values of its physical quantities as normally conceived only exist relative to a cut between a system and an observer or measuring instrument. Furthermore, on Rovelli's account, the appearance of determinate observations from pure quantum superpositions happens only relative to the interaction of the system and observer. Jeffrey Barrett ([1999]) has pointed out that certain relational interpretations suffer from what we might call the (...)
    Direct download (11 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  30.  33
    Manuel Bächtold (2008). Interpreting Quantum Mechanics According to a Pragmatist Approach. Foundations of Physics 38 (9):843-868.
    The aim of this paper is to show that quantum mechanics can be interpreted according to a pragmatist approach. The latter consists, first, in giving a pragmatic definition to each term used in microphysics, second, in making explicit the functions any theory must fulfil so as to ensure the success of the research activity in microphysics, and third, in showing that quantum mechanics is the only theory which fulfils exactly these functions.
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  31. Nicholas Maxwell (1976). Towards a Micro Realistic Version of Quantum Mechanics, Part II. Foundations of Physics 6 (6):661-676.
    In this paper, possible objections to the propensity microrealistic version of quantum mechanics proposed in Part I are answered. This version of quantum mechanics is compared with the statistical, particle microrealistic viewpoint, and a crucial experiment is proposed designed to distinguish between these to microrealistic versions of quantum mechanics.
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   2 citations  
  32.  11
    D. J. Hurley & M. A. Vandyck (2014). A Minimal Framework for Non-Commutative Quantum Mechanics. Foundations of Physics 44 (11):1168-1187.
    Deformation quantisation is applied to ordinary Quantum Mechanics by introducing the star product in a configuration space combining a Riemannian structure with a Poisson one. A Hilbert space compatible with such a configuration space is designed. The dynamics is expressed by a Hermitian Hamiltonian containing a scalar potential and a one-form potential. As a simple illustration, it is shown how a particular type of non-commutativity of the star product is interpretable as generating the Zeeman effect of ordinary (...) Mechanics. (shrink)
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  33.  42
    S. E. Perez Bergliaffa, Gustavo E. Romero & H. Vucetich (1993). Axiomatic Foundations of Non-Relativistic Quantum Mechanics: A Realistic Approach. International Journal of Theoretical Physics 32 (9):1507-1522.
    A realistic axiomatic formulation of nonrelativistic quantum mechanics for a single microsystem with spin is presented, from which the most important theorems of the theory can be deduced. In comparison with previous formulations, the formal aspect has been improved by the use of certain mathematical theories, such as the theory of equipped spaces, and group theory. The standard formalism is naturally obtained from the latter, starting from a central primitive concept: the Galilei group.
    Translate
      Direct download  
     
    Export citation  
     
    My bibliography   3 citations  
  34.  86
    David John Miller (2008). Quantum Mechanics as a Consistency Condition on Initial and Final Boundary Conditions. Studies in History and Philosophy of Science Part B 39 (4):767-781.
    If the block universe view is correct, the future and the past have similar status and one would expect physical theories to involve final as well as initial boundary conditions. A plausible consistency condition between the initial and final boundary conditions in non-relativistic quantum mechanics leads to the idea that the properties of macroscopic quantum systems, relevantly measuring instruments, are uniquely determined by the boundary conditions. An important element in reaching that conclusion is that preparations and measurements (...)
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  35.  12
    George Kalkanis, Pandora Hadzidaki & Dimitrios Stavrou (2003). An Instructional Model for a Radical Conceptual Change Towards Quantum Mechanics Concepts. Science Education 87 (2):257-280.
    We believe that physics education has to meet today’s requirement for a qualitative approach to Quantum Mechanics (QM) worldview. An effective answer to the corresponding instructional problem might allow the basic ideas of QM to be accessed atan early stage of physics education. This paper presents part of a project that aims at introducing a sufficient, simple, and relevant teaching approach towards QM into in-/preservice teacher education, i.e., at providing teachers with the indispensable scientific knowledge and epistemological base (...)
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  36.  3
    Roderick I. Sutherland (forthcoming). Lagrangian Description for Particle Interpretations of Quantum Mechanics: Single-Particle Case. Foundations of Physics:1-11.
    A Lagrangian description is presented which can be used in conjunction with particle interpretations of quantum mechanics. A special example of such an interpretation is the well-known Bohm model. The Lagrangian density introduced here also contains a potential for guiding the particle. The advantages of this description are that the field equations and the particle equations of motion can both be deduced from a single Lagrangian density expression and that conservation of energy and momentum are assured. After being (...)
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  37. Elias Okon & Craig Callender (2011). Does Quantum Mechanics Clash with the Equivalence Principle—and Does It Matter? European Journal for Philosophy of Science 1 (1):133-145.
    Does quantum mechanics clash with the equivalence principle—and does it matter? Content Type Journal Article Pages 133-145 DOI 10.1007/s13194-010-0009-z Authors Elias Okon, Philosophy Department, UC San Diego, 9500 Gilman Dr., La Jolla CA, 92093, USA Craig Callender, Philosophy Department, UC San Diego, 9500 Gilman Dr., La Jolla CA, 92093, USA Journal European Journal for Philosophy of Science Online ISSN 1879-4920 Print ISSN 1879-4912 Journal Volume Volume 1 Journal Issue Volume 1, Number 1.
    Direct download (8 more)  
     
    Export citation  
     
    My bibliography  
  38. Fernando Birman (2009). Quantum Mechanics and the Plight of Physicalism. Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 40 (2):207-225.
    The literature on physicalism often fails to elucidate, I think, what the word physical in physical ism precisely means. Philosophers speak at times of an ideal set of fundamental physical facts, or they stipulate that physical means non-mental , such that all fundamental physical facts are fundamental facts pertaining to the non-mental. In this article, I will probe physicalism in the very much tangible framework of quantum mechanics. Although this theory, unlike “ideal physics” or some “final theory of (...)
    Direct download (6 more)  
     
    Export citation  
     
    My bibliography  
  39.  15
    Emilio Santos (forthcoming). Towards a Realistic Interpretation of Quantum Mechanics Providing a Model of the Physical World. Foundations of Science:1-30.
    It is argued that a realistic interpretation of quantum mechanics is possible and useful. Current interpretations, from “Copenhagen” to “many worlds” are critically revisited. The difficulties for intuitive models of quantum physics are pointed out and possible solutions proposed. In particular the existence of discrete states, the quantum jumps, the alleged lack of objective properties, measurement theory, the probabilistic character of quantum physics, the wave–particle duality and the Bell inequalities are analyzed. The sketch of a (...)
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  40.  5
    Gregg Jaeger (2015). Measurement and Fundamental Processes in Quantum Mechanics. Foundations of Physics 45 (7):806-819.
    In the standard mathematical formulation of quantum mechanics, measurement is an additional, exceptional fundamental process rather than an often complex, but ordinary process which happens also to serve a particular epistemic function: during a measurement of one of its properties which is not already determined by a preceding measurement, a measured system, even if closed, is taken to change its state discontinuously rather than continuously as is usual. Many, including Bell, have been concerned about the fundamental role thus (...)
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  41.  39
    Jae-Weon Lee (2011). Quantum Mechanics Emerges From Information Theory Applied to Causal Horizons. Foundations of Physics 41 (4):744-753.
    It is suggested that quantum mechanics is not fundamental but emerges from classical information theory applied to causal horizons. The path integral quantization and quantum randomness can be derived by considering information loss of fields or particles crossing Rindler horizons for accelerating observers. This implies that information is one of the fundamental roots of all physical phenomena. The connection between this theory and Verlinde’s entropic gravity theory is also investigated.
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography  
  42.  7
    A. F. Bennett (2015). Spin-Statistics Connection for Relativistic Quantum Mechanics. Foundations of Physics 45 (4):370-381.
    The spin-statistics connection has been proved for nonrelativistic quantum mechanics . The proof is extended here to the relativistic regime using the parametrized Dirac equation. A causality condition is not required.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  43.  36
    F. T. Falciano, M. Novello & J. M. Salim (2010). Geometrizing Relativistic Quantum Mechanics. Foundations of Physics 40 (12):1885-1901.
    We propose a new approach to describe quantum mechanics as a manifestation of non-Euclidean geometry. In particular, we construct a new geometrical space that we shall call Qwist. A Qwist space has a extra scalar degree of freedom that ultimately will be identified with quantum effects. The geometrical properties of Qwist allow us to formulate a geometrical version of the uncertainty principle. This relativistic uncertainty relation unifies the position-momentum and time-energy uncertainty principles in a unique relation that (...)
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography  
  44. Maarten Van Dyck (2003). The Roles of One Thought Experiment in Interpreting Quantum Mechanics. Werner Heisenberg Meets Thomas Kuhn. Philosophica 72 (3):79-103.
    Recent years saw the rise of an interest in the roles and significance of thought experiments in different areas of human thinking. Heisenberg's gamma ray microscope is no doubt one of the most famous examples of a thought experiment in physics. Nevertheless, this particular thought experiment has not received much detailed attention in the philosophical literature on thought experiments up to date, maybe because of its often claimed inadequacies. In this paper, I try to do two things: to provide an (...)
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  45.  29
    F. Strocchi (2004). Relativistic Quantum Mechanics and Field Theory. Foundations of Physics 34 (3):501-527.
    The problems which arise for a relativistic quantum mechanics are reviewed and critically examined in connection with the foundations of quantum field theory. The conflict between the quantum mechanical Hilbert space structure, the locality property and the gauge invariance encoded in the Gauss' law is discussed in connection with the various quantization choices for gauge fields.
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography  
  46.  22
    Gyula Bene & Dennis Dieks (2002). A Perspectival Version of the Modal Interpretation of Quantum Mechanics and the Origin of Macroscopic Behavior. Foundations of Physics 32 (5):645-671.
    We study the process of observation (measurement), within the framework of a “perspectival” (“relational,” “relative state”) version of the modal interpretation of quantum mechanics. We show that if we assume certain features of discreteness and determinism in the operation of the measuring device (which could be a part of the observer's nerve system), this gives rise to classical characteristics of the observed properties, in the first place to spatial localization. We investigate to what extent semi-classical behavior of the (...)
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography   2 citations  
  47.  32
    Juan Eduardo Reluz Machicote (2010). Time as a Geometric Concept Involving Angular Relations in Classical Mechanics and Quantum Mechanics. Foundations of Physics 40 (11):1744-1778.
    The goal of this paper is to introduce the notion of a four-dimensional time in classical mechanics and in quantum mechanics as a natural concept related with the angular momentum. The four-dimensional time is a consequence of the geometrical relation in the particle in a given plane defined by the angular momentum. A quaternion is the mathematical entity that gives the correct direction to the four-dimensional time.Taking into account the four-dimensional time as a vectorial quaternionic idea, we (...)
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  48.  32
    B. J. Hiley (2010). On the Relationship Between the Wigner-Moyal and Bohm Approaches to Quantum Mechanics: A Step to a More General Theory? [REVIEW] Foundations of Physics 40 (4):356-367.
    In this paper we show that the three main equations used by Bohm in his approach to quantum mechanics are already contained in the earlier paper by Moyal which forms the basis for what is known as the Wigner-Moyal approach. This shows, contrary to the usual perception, that there is a deep relation between the two approaches. We suggest the relevance of this result to the more general problem of constructing a quantum geometry.
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography  
  49.  18
    Ulrich Mohrhoff (2002). The World According to Quantum Mechanics (Or the 18 Errors of Henry P. Stapp). Foundations of Physics 32 (2):217-254.
    Several errors in Stapp's interpretation of quantum mechanics and its application to mental causation (Henry P. Stapp, “Quantum theory and the role of mind in nature,” Foundations of Physics 31, 1465–1499 (2001)) are pointed out. An interpretation of (standard) quantum mechanics that avoids these errors is presented.
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  50.  15
    Gabriel Vacariu (2006). THE EPISTEMOLOGICALLY DIFFERENT WORLDS PERSPECTIVE AND SOME PSEUDO-NOTIONS FROM QUANTUM MECHANICS. Analele Universitatii Bucuresti:127-138.
    In this paper, I argue that the wrong notion of the “world” (I called it the “unicorn-world”) has to be replaced by the “epistemologically different worlds” (EDWs). Working in the unicorn-world in the last century, the physicists have tried to solve some pseudo-problems of quantum mechanics like non-locality and entanglement with pseudo-alternatives like multiverse approach and decoherence. EDWs perspective clarifies many notions from quantum theory, in particular, and physics, in general.
    Direct download  
     
    Export citation  
     
    My bibliography  
1 — 50 / 1000