Search results for 'Quantum beables' (try it on Scholar)

1000+ found
Order:
  1.  13
    Towards A. Possible Explanation Of Quantum (1999). The Creation, Discovery, View: Towards a Possible Explanation of Quantum Reality. In Maria Luisa Dalla Chiara (ed.), Language, Quantum, Music. 105.
    Direct download  
     
    Export citation  
     
    My bibliography  
  2.  11
    Jeffrey Bub (1991). Measurement and “Beables” in Quantum Mechanics. Foundations of Physics 21 (1):25-42.
    It is argued that the measurement problem reduces to the problem of modeling quasi-classical systems in a modified quantum mechanics with superselection rules. A measurement theorem is proved, demonstrating, on the basis of a principle for selecting the quantities of a system that are determinate (i.e., have values) in a given state, that after a suitable interaction between a systemS and a quasi-classical systemM, essentially only the quantity measured in the interaction and the indicator quantity ofM are determinate. The (...)
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  3.  4
    D. Bohm & B. J. Hiley (1991). On the Relativistic Invariance of a Quantum Theory Based on Beables. Foundations of Physics 21 (2):243-250.
    We discuss the question of the relativistic invariance of a quantum theory based on beables, and we suggest the general outlines of one possible form of such a theory.
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography  
  4.  23
    J. S. Bell (1987). Beables for Quantum Field Theory. In Basil J. Hiley & D. Peat (eds.), Quantum Implications: Essays in Honour of David Bohm. Methuen 227--234.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography   20 citations  
  5.  5
    Nicholas Maxwell (1993). Beyond Fapp: Three Approaches to Improving Orthodox Quantum Theory and An Experimental Test. In A. van der Merwe, F. Selleri & G. Tarozzi (eds.), Bell's Theorem and the Foundations of Modern Physics. World Scientific
    Because it fails to solve the wave-particle problem, orthodox quantum theory is obliged to be about observables and not quantum beables. As a result the theory is imprecise, ambiguous, ad hoc, lacking in explanatory power, restricted in scope and resistant to unification. A new version of quantum theory is needed that is about quantum beables.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  6. G. M. Prosperi (2000). Common Experience and Quantum Theory-Observables and Beables. Boston Studies in the Philosophy of Science 215:343-352.
     
    Export citation  
     
    My bibliography  
  7.  48
    Tim Maudlin (2015). The Universal and the Local in Quantum Theory. Topoi 34 (2):349-358.
    Any empirical physical theory must have implications for observable events at the scale of everyday life, even though that scale plays no special role in the basic ontology of the theory itself. The fundamental physical scales are microscopic for the “local beables” of the theory and universal scale for the non-local beables. This situation creates strong demands for any precise quantum theory. This paper examines those constraints, and illustrates some ways in which they can be met.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  8.  44
    Vincent Lam & Michael Esfeld (2013). A Dilemma for the Emergence of Spacetime in Canonical Quantum Gravity. Studies in History and Philosophy of Modern Physics 44 (3):286-293.
    The procedures of canonical quantization of the gravitational field apparently lead to entities for which any interpretation in terms of spatio-temporal localization or spatio-temporal extension seems difficult. This fact is the main ground for the suggestion that can often be found in the physics literature on canonical quantum gravity according to which spacetime may not be fundamental in some sense. This paper aims to investigate this radical suggestion from an ontologically serious point of view in the cases of two (...)
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   4 citations  
  9.  23
    Vincent Lam (2015). Primitive Ontology and Quantum Field Theory. European Journal for Philosophy of Science 5 (3):387-397.
    Primitive ontology is a recently much discussed approach to the ontology of quantum theory according to which the theory is ultimately about entities in 3-dimensional space and their temporal evolution. This paper critically discusses the primitive ontologies that have been suggested within the Bohmian approach to quantum field theory in the light of the existence of unitarily inequivalent representations. These primitive ontologies rely either on a Fock space representation or a wave functional representation, which are strictly speaking unambiguously (...)
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography  
  10.  54
    Alyssa Ney (2015). Fundamental Physical Ontologies and the Constraint of Empirical Coherence: A Defense of Wave Function Realism. Synthese 192 (10):3105-3124.
    This paper defends wave function realism against the charge that the view is empirically incoherent because our evidence for quantum theory involves facts about objects in three-dimensional space or space-time . It also criticizes previous attempts to defend wave function realism against this charge by claiming that the wave function is capable of grounding local beables as elements of a derivative ontology.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  11.  24
    Travis Norsen (2010). The Theory of (Exclusively) Local Beables. Foundations of Physics 40 (12):1858-1884.
    It is shown how, starting with the de Broglie–Bohm pilot-wave theory, one can construct a new theory of the sort envisioned by several of QM’s founders: a Theory of Exclusively Local Beables (TELB). In particular, the usual quantum mechanical wave function (a function on a high-dimensional configuration space) is not among the beables posited by the new theory. Instead, each particle has an associated “pilot-wave” field (living in physical space). A number of additional fields (also fields on (...)
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   5 citations  
  12.  99
    Lee Smolin (2012). A Real Ensemble Interpretation of Quantum Mechanics. Foundations of Physics 42 (10):1239-1261.
    A new ensemble interpretation of quantum mechanics is proposed according to which the ensemble associated to a quantum state really exists: it is the ensemble of all the systems in the same quantum state in the universe. Individual systems within the ensemble have microscopic states, described by beables. The probabilities of quantum theory turn out to be just ordinary relative frequencies probabilities in these ensembles. Laws for the evolution of the beables of individual systems (...)
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography  
  13.  27
    Peter J. Lewis, In Search of Local Beables.
    The call to supplement the quantum wave function with local beables is almost as old as quantum mechanics. But what exactly is the problem with the wave function as the representation of a quantum system? I canvass three potential problems with the wave function: the well-known problems of incompleteness and dimensionality, and the lesser known problem of non-locality introduced recently by Myrvold. Building on Myrvold's insight, I show that the standard ways of introducing local beables (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  14.  3
    John S. Bell, J. Clauser, M. Horne & A. Shimony (1985). An Exchange on Local Beables. Dialectica 39 (2):85-96.
    Summarya) Bell tries to formulate more explicitly a notion of “local causality”: correlations between physical events in different space‐time regions should be explicable in terms of physical events in the overlap of the backward light cones. It is shown that ordinary relativistic quantum field theory is not locally causal in this sense, and cannot be embedded in a locally causal theory.b) Clauser, Home and Shimony criticize several steps in Bell's argument that any theory of local “beables” is incompatible (...)
    Direct download  
     
    Export citation  
     
    My bibliography   12 citations  
  15.  39
    Michael Esfeld & Antonio Vassallo (2013). From Quantum Gravity to Classical Phenomena. In Tilman Sauer & Adrian Wüthrich (eds.), New Vistas on Old Problems. Max Planck Research Library for the History and Development of Knowledge
    Quantum gravity is supposed to be the most fundamental theory, including a quantum theory of the metrical field (spacetime). However, it is not clear how a quantum theory of gravity could account for classical phenomena, including notably measurement outcomes. But all the evidence that we have for a physical theory is based on measurement outcomes. We consider this problem in the framework of canonical quantum gravity, pointing out a dilemma: all the available accounts that admit classical (...)
    Direct download  
     
    Export citation  
     
    My bibliography  
  16.  14
    Ph Blanchard & A. Jadczyk (1996). Relativistic Quantum Events. Foundations of Physics 26 (12):1669-1681.
    Standard quantum theory is inadequate to explain the mechanisms by which potential becomes actual. It is inadequate and therefore unable to describe generation of events. Niels Bohr emphasized long ago that the classical part of the world is necessary. John Bell stressed the same point: that “measurement≓ cannot even be defined within the standard quantum theory, and he sought a solution within hidden variable theories and his concept of “beables.≓Today it is customary to try to explain emergence (...)
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography  
  17.  94
    Jeffrey Bub (2010). Von Neumann's 'No Hidden Variables' Proof: A Re-Appraisal. [REVIEW] Foundations of Physics 40 (9-10):1333-1340.
    Since the analysis by John Bell in 1965, the consensus in the literature is that von Neumann’s ‘no hidden variables’ proof fails to exclude any significant class of hidden variables. Bell raised the question whether it could be shown that any hidden variable theory would have to be nonlocal, and in this sense ‘like Bohm’s theory.’ His seminal result provides a positive answer to the question. I argue that Bell’s analysis misconstrues von Neumann’s argument. What von Neumann proved was the (...)
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography  
  18.  18
    Jeffrey A. Barrett, Wigner's Friend and Bell's Field Beables.
    A field-theoretic version of Wigner’s friend (1961) illustrates how the quantum measurement problem arises for field theory. Similarly, considering spacelike separate measurements of entangled fields by observers akin to Wigner’s friend shows the sense in which relativistic constraints make the measurement problem particularly difficult to resolve in the context of a relativistic field theory. We will consider proposals by Wigner (1961), Bloch (1967), Helwig and Kraus (1970), and Bell (1984) for resolving the measurement problem for quantum field theory. (...)
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  19. J. S. Bell (2004). Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy. Cambridge University Press.
    This book comprises all of John Bell's published and unpublished papers in the field of quantum mechanics, including two papers that appeared after the first edition was published. It also contains a preface written for the first edition, and an introduction by Alain Aspect that puts into context Bell's great contribution to the quantum philosophy debate. One of the leading expositors and interpreters of modern quantum theory, John Bell played a major role in the development of our (...)
     
    Export citation  
     
    My bibliography   252 citations  
  20. Louis Vervoort & Yves Gingras, Macroscopic Oil Droplets Mimicking Quantum Behavior: How Far Can We Push an Analogy?
    We describe here a series of experimental analogies between fluid mechanics and quantum mechanics recently discovered by a team of physicists. These analogies arise in droplet systems guided by a surface (or pilot) wave. We argue that these experimental facts put ancient theoretical work by Madelung on the analogy between fluid and quantum mechanics into new light. After re-deriving Madelung’s result starting from two basic fluid-mechanical equations (the Navier-Stokes equation and the continuity equation), we discuss the relation with (...)
    Direct download  
     
    Export citation  
     
    My bibliography  
  21.  84
    David Bohm (1993). The Undivided Universe: An Ontological Interpretation of Quantum Theory. Routledge.
    In the The Undivided Universe, David Bohn and Basil Hiley present a radically different approach to quantum theory.
    Direct download  
     
    Export citation  
     
    My bibliography   100 citations  
  22.  73
    Jill North (2013). The Structure of a Quantum World. In Alyssa Ney & David Albert (eds.), The Wave Function: Essays on the Metaphysics of Quantum Mechanics. Oxford UP 184-202.
    I argue that the fundamental space of a quantum mechanical world is the wavefunction's space. I argue for this using some very general principles that guide our inferences to the fundamental nature of a world, for any fundamental physical theory. I suggest that ordinary three-dimensional space exists in such a world, but is non-fundamental; it emerges from the fundamental space of the wavefunction.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography   4 citations  
  23.  44
    David Wallace, Emergence of Particles From Bosonic Quantum Field Theory.
    An examination is made of the way in which particles emerge from linear, bosonic, massive quantum field theories. Two different constructions of the one-particle subspace of such theories are given, both illustrating the importance of the interplay between the quantum-mechanical linear structure and the classical one. Some comments are made on the Newton-Wigner representation of one-particle states, and on the relationship between the approach of this paper and those of Segal, and of Haag and Ruelle.
    Direct download  
     
    Export citation  
     
    My bibliography   11 citations  
  24.  39
    Valia Allori (forthcoming). How to Make Sense of Quantum Mechanics : Fundamental Physical Theories and Primitive Ontology. In Ulf Edvinsson (ed.), The Mammoth Book of Quantum Mechanics Interpretations. Open Academic Press
    Quantum mechanics has always been regarded as, at best, puzzling, if not contradictory. The aim of the paper is to explore a particular approach to fundamental physical theories, the one based on the notion of primitive ontology. This approach, when applied to quantum mechanics, makes it a paradox-free theory.
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  25.  58
    Edward MacKinnon (2016). Why Interpret Quantum Mechanics. Open Journal of Philosophy 6:86-102.
    This article probes the question of what interpretations of quantum mechanics actually accomplish. In other domains, which are briefly considered, interpretations serve to make alien systematizations intelligible to us. This often involves clarifying the status of their implicit ontology. A survey of interpretations of non-relativistic quantum mechanics supports the evaluation that these interpretations make a contribution to philosophy, but not to physics. Interpretations of quantum field theory are polarized by the divergence between the Lagrangian field theory that (...)
    Direct download  
     
    Export citation  
     
    My bibliography  
  26.  62
    Arthur Fine (1996). The Shaky Game: Einstein, Realism, and the Quantum Theory. University of Chicago Press.
    In this new edition, Arthur Fine looks at Einstein's philosophy of science and develops his own views on realism. A new Afterword discusses the reaction to Fine's own theory. "What really led Einstein . . . to renounce the new quantum order? For those interested in this question, this book is compulsory reading."--Harvey R. Brown, American Journal of Physics "Fine has successfully combined a historical account of Einstein's philosophical views on quantum mechanics and a discussion of some of (...)
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography   63 citations  
  27. Nicholas Maxwell (1995). A Philosopher Struggles to Understand Quantum Theory: Particle Creation and Wavepacket Reduction. In M. Ferrero & A. van der Merwe (eds.), Fundamental Problems in Quantum Physics.
    Work on the central problems of the philosophy of science has led the author to attempt to create an intelligible version of quantum theory. The basic idea is that probabilistic transitions occur when new stationary or particle states arise as a result of inelastic collisions.
    Translate
      Direct download  
     
    Export citation  
     
    My bibliography  
  28.  38
    Slobodan Perovic (2008). Why Were Two Theories (Matrix Mechanics and Wave Mechanics) Deemed Logically Distinct, and yet Equivalent, in Quantum Mechanics? In Christopher Lehrer (ed.), First Annual Conference in the Foundations and History of Quantum Physics. Max Planck Institute for History of Science
    A recent rethinking of the early history of Quantum Mechanics deemed the late 1920s agreement on the equivalence of Matrix Mechanics and Wave Mechanics, prompted by Schrödinger’s 1926 proof, a myth. Schrödinger supposedly failed to achieve the goal of proving isomorphism of the mathematical structures of the two theories, while only later developments in the early 1930s, especially the work of mathematician John von Neumman (1932) provided sound proof of equivalence. The alleged agreement about the Copenhagen Interpretation, predicated to (...)
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  29.  79
    Laura Ruetsche (2011). Interpreting Quantum Theories: The Art of the Possible. Oxford University Press.
    Traditionally, philosophers of quantum mechanics have addressed exceedingly simple systems: a pair of electrons in an entangled state, or an atom and a cat in Dr. Schrodinger's diabolical device. But recently, much more complicated systems, such as quantum fields and the infinite systems at the thermodynamic limit of quantum statistical mechanics, have attracted, and repaid, philosophical attention. Interpreting Quantum Theories has three entangled aims. The first is to guide those familiar with the philosophy of ordinary QM (...)
    Direct download  
     
    Export citation  
     
    My bibliography   15 citations  
  30.  60
    Zheng Wang, Jerome R. Busemeyer, Harald Atmanspacher & Emmanuel M. Pothos (2013). The Potential of Using Quantum Theory to Build Models of Cognition. Topics in Cognitive Science 5 (4):672-688.
    Quantum cognition research applies abstract, mathematical principles of quantum theory to inquiries in cognitive science. It differs fundamentally from alternative speculations about quantum brain processes. This topic presents new developments within this research program. In the introduction to this topic, we try to answer three questions: Why apply quantum concepts to human cognition? How is quantum cognitive modeling different from traditional cognitive modeling? What cognitive processes have been modeled using a quantum account? In addition, (...)
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography   14 citations  
  31. Marcus Arvan (2014). A Unified Explanation of Quantum Phenomena? The Case for the Peer‐to‐Peer Simulation Hypothesis as an Interdisciplinary Research Program. Philosophical Forum 45 (4):433-446.
    In my 2013 article, “A New Theory of Free Will”, I argued that several serious hypotheses in philosophy and modern physics jointly entail that our reality is structurally identical to a peer-to-peer (P2P) networked computer simulation. The present paper outlines how quantum phenomena emerge naturally from the computational structure of a P2P simulation. §1 explains the P2P Hypothesis. §2 then sketches how the structure of any P2P simulation realizes quantum superposition and wave-function collapse (§2.1.), quantum indeterminacy (§2.2.), (...)
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography  
  32.  33
    Zheng Wang & Jerome R. Busemeyer (2013). A Quantum Question Order Model Supported by Empirical Tests of an A Priori and Precise Prediction. Topics in Cognitive Science 5 (4):689-710.
    Question order effects are commonly observed in self-report measures of judgment and attitude. This article develops a quantum question order model (the QQ model) to account for four types of question order effects observed in literature. First, the postulates of the QQ model are presented. Second, an a priori, parameter-free, and precise prediction, called the QQ equality, is derived from these mathematical principles, and six empirical data sets are used to test the prediction. Third, a new index is derived (...)
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography   13 citations  
  33. Mauro Dorato & Matteo Morganti (2013). Grades of Individuality. A Pluralistic View of Identity in Quantum Mechanics and in the Sciences. Philosophical Studies 163 (3):591-610.
    This paper offers a critical assessment of the current state of the debate about the identity and individuality of material objects. Its main aim, in particular, is to show that, in a sense to be carefully specified, the opposition between the Leibnizian ‘reductionist’ tradition, based on discernibility, and the sort of ‘primitivism’ that denies that facts of identity and individuality must be analysable has become outdated. In particular, it is argued that—contrary to a widespread consensus—‘naturalised’ metaphysics supports both the acceptability (...)
    Direct download (8 more)  
     
    Export citation  
     
    My bibliography   9 citations  
  34. Karen Michelle Barad (2007). Meeting the Universe Halfway: Quantum Physics and the Entanglement of Matter and Meaning. Duke University Press.
  35.  17
    A. Zee (2010). Quantum Field Theory in a Nutshell. Princeton University Press.
    Since it was first published, Quantum Field Theory in a Nutshell has quickly established itself as the most accessible and comprehensive introduction to this profound and deeply fascinating area of theoretical physics. Now in this fully revised and expanded edition, A. Zee covers the latest advances while providing a solid conceptual foundation for students to build on, making this the most up-to-date and modern textbook on quantum field theory available. -/- This expanded edition features several additional chapters, as (...)
    Direct download  
     
    Export citation  
     
    My bibliography   14 citations  
  36.  23
    David Ellerman, On Classical and Quantum Logical Entropy.
    The notion of a partition on a set is mathematically dual to the notion of a subset of a set, so there is a logic of partitions dual to Boole's logic of subsets (Boolean logic is usually mis-specified as "propositional" logic). The notion of an element of a subset has as its dual the notion of a distinction of a partition (a pair of elements in different blocks). Boole developed finite logical probability as the normalized counting measure on elements of (...)
    Translate
      Direct download  
     
    Export citation  
     
    My bibliography  
  37.  53
    Diederik Aerts, Liane Gabora & Sandro Sozzo (2013). Concepts and Their Dynamics: A Quantum‐Theoretic Modeling of Human Thought. Topics in Cognitive Science 5 (4):737-772.
    We analyze different aspects of our quantum modeling approach of human concepts and, more specifically, focus on the quantum effects of contextuality, interference, entanglement, and emergence, illustrating how each of them makes its appearance in specific situations of the dynamics of human concepts and their combinations. We point out the relation of our approach, which is based on an ontology of a concept as an entity in a state changing under influence of a context, with the main traditional (...)
    Direct download (6 more)  
     
    Export citation  
     
    My bibliography   10 citations  
  38. R. I. G. Hughes (1989). The Structure and Interpretation of Quantum Mechanics. Harvard University Press.
    R.I.G Hughes offers the first detailed and accessible analysis of the Hilbert-space models used in quantum theory and explains why they are so successful.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography   57 citations  
  39. Michael Redhead (1987). Incompleteness, Nonlocality, and Realism: A Prolegomenon to the Philosophy of Quantum Mechanics. Oxford University Press.
    Aiming to unravel the mystery of quantum mechanics, this book is concerned with questions about action-at-a-distance, holism, and whether quantum mechanics gives a complete account of microphysical reality. With rigorous arguments and clear thinking, the author provides an introduction to the philosophy of physics.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography   61 citations  
  40.  54
    Karl R. Popper (1992). Quantum Theory and the Schism in Physics. Routledge.
    The basic theme of Popper's philosophy--that something can come from nothing--is related to the present situation in physical theory. Popper carries his investigation right to the center of current debate in quantum physics. He proposes an interpretation of physics--and indeed an entire cosmology--which is realist, conjectural, deductivist and objectivist, anti-positivist, and anti-instrumentalist. He stresses understanding, reminding us that our ignorance grows faster than our conjectural knowledge.
    Direct download  
     
    Export citation  
     
    My bibliography   50 citations  
  41. Elizabeth Miller (2014). Quantum Entanglement, Bohmian Mechanics, and Humean Supervenience. Australasian Journal of Philosophy 92 (3):567-583.
    David Lewis is a natural target for those who believe that findings in quantum physics threaten the tenability of traditional metaphysical reductionism. Such philosophers point to allegedly holistic entities they take both to be the subjects of some claims of quantum mechanics and to be incompatible with Lewisian metaphysics. According to one popular argument, the non-separability argument from quantum entanglement, any realist interpretation of quantum theory is straightforwardly inconsistent with the reductive conviction that the complete physical (...)
    No categories
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography   7 citations  
  42.  22
    Emmanuel M. Pothos & Jerome R. Busemeyer (2013). Can Quantum Probability Provide a New Direction for Cognitive Modeling? Behavioral and Brain Sciences 36 (3):255-274.
    Classical (Bayesian) probability (CP) theory has led to an influential research tradition for modeling cognitive processes. Cognitive scientists have been trained to work with CP principles for so long that it is hard even to imagine alternative ways to formalize probabilities. However, in physics, quantum probability (QP) theory has been the dominant probabilistic approach for nearly 100 years. Could QP theory provide us with any advantages in cognitive modeling as well? Note first that both CP and QP theory share (...)
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   9 citations  
  43. Rob Clifton, Jeffrey Bub & Hans Halvorson (2003). Characterizing Quantum Theory in Terms of Information-Theoretic Constraints. Foundations of Physics 33 (11):1561-1591.
    We show that three fundamental information-theoretic constraints -- the impossibility of superluminal information transfer between two physical systems by performing measurements on one of them, the impossibility of broadcasting the information contained in an unknown physical state, and the impossibility of unconditionally secure bit commitment -- suffice to entail that the observables and state space of a physical theory are quantum-mechanical. We demonstrate the converse derivation in part, and consider the implications of alternative answers to a remaining open question (...)
    Direct download (8 more)  
     
    Export citation  
     
    My bibliography   37 citations  
  44.  25
    Reinhard Blutner, Emmanuel M. Pothos & Peter Bruza (2013). A Quantum Probability Perspective on Borderline Vagueness. Topics in Cognitive Science 5 (4):711-736.
    The term “vagueness” describes a property of natural concepts, which normally have fuzzy boundaries, admit borderline cases, and are susceptible to Zeno's sorites paradox. We will discuss the psychology of vagueness, especially experiments investigating the judgment of borderline cases and contradictions. In the theoretical part, we will propose a probabilistic model that describes the quantitative characteristics of the experimental finding and extends Alxatib's and Pelletier's () theoretical analysis. The model is based on a Hopfield network for predicting truth values. Powerful (...)
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography   8 citations  
  45. P. A. M. Dirac (1930). The Principles of Quantum Mechanics. Oxford, the Clarendon Press.
    THE PRINCIPLE OF SUPERPOSITION. The need for a quantum theory Classical mechanics has been developed continuously from the time of Newton and applied to an ...
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography   141 citations  
  46. Ian G. Fuss & Daniel J. Navarro (2013). Open Parallel Cooperative and Competitive Decision Processes: A Potential Provenance for Quantum Probability Decision Models. Topics in Cognitive Science 5 (4):818-843.
    In recent years quantum probability models have been used to explain many aspects of human decision making, and as such quantum models have been considered a viable alternative to Bayesian models based on classical probability. One criticism that is often leveled at both kinds of models is that they lack a clear interpretation in terms of psychological mechanisms. In this paper we discuss the mechanistic underpinnings of a quantum walk model of human decision making and response time. (...)
    Direct download (8 more)  
     
    Export citation  
     
    My bibliography   6 citations  
  47. Jennifer S. Trueblood & Jerome R. Busemeyer (2011). A Quantum Probability Account of Order Effects in Inference. Cognitive Science 35 (8):1518-1552.
    Order of information plays a crucial role in the process of updating beliefs across time. In fact, the presence of order effects makes a classical or Bayesian approach to inference difficult. As a result, the existing models of inference, such as the belief-adjustment model, merely provide an ad hoc explanation for these effects. We postulate a quantum inference model for order effects based on the axiomatic principles of quantum probability theory. The quantum inference model explains order effects (...)
    Direct download (6 more)  
     
    Export citation  
     
    My bibliography   11 citations  
  48.  79
    Charles J. Brainerd, Zheng Wang & Valerie F. Reyna (2013). Superposition of Episodic Memories: Overdistribution and Quantum Models. Topics in Cognitive Science 5 (4):773-799.
    Memory exhibits episodic superposition, an analog of the quantum superposition of physical states: Before a cue for a presented or unpresented item is administered on a memory test, the item has the simultaneous potential to occupy all members of a mutually exclusive set of episodic states, though it occupies only one of those states after the cue is administered. This phenomenon can be modeled with a nonadditive probability model called overdistribution (OD), which implements fuzzy-trace theory's distinction between verbatim and (...)
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography   6 citations  
  49. Alisa Bokulich (2008). Reexamining the Quantum-Classical Relation: Beyond Reductionism and Pluralism. Cambridge University Press.
    Classical mechanics and quantum mechanics are two of the most successful scientific theories ever discovered, and yet how they can describe the same world is far from clear: one theory is deterministic, the other indeterministic; one theory describes a world in which chaos is pervasive, the other a world in which chaos is absent. Focusing on the exciting field of 'quantum chaos', this book reveals that there is a subtle and complex relation between classical and quantum mechanics. (...)
     
    Export citation  
     
    My bibliography   11 citations  
  50.  14
    Paul Teller (1995). An Interpretive Introduction to Quantum Field Theory. Princeton University Press.
    Quantum mechanics is a subject that has captured the imagination of a surprisingly broad range of thinkers, including many philosophers of science. Quantum field theory, however, is a subject that has been discussed mostly by physicists. This is the first book to present quantum field theory in a manner that makes it accessible to philosophers. Because it presents a lucid view of the theory and debates that surround the theory, An Interpretive Introduction to Quantum Field Theory (...)
    Direct download  
     
    Export citation  
     
    My bibliography   27 citations  
1 — 50 / 1000