Search results for 'Richard E. Vesley' (try it on Scholar)

25 found
Sort by:
  1. Richard E. Vesley (1963). On Strengthening Intuitionistic Logic. Notre Dame Journal of Formal Logic 4 (1):80-80.score: 870.0
    Direct download (5 more)  
     
    My bibliography  
     
    Export citation  
  2. Richard E. Vesley (1996). Realizing Brouwer's Sequences. Annals of Pure and Applied Logic 81 (1-3):25-74.score: 870.0
    When Kleene extended his recursive realizability interpretation from intuitionistic arithmetic to analysis, he was forced to use more than recursive functions to interpret sequences and conditional constructions. In fact, he used what classically appears to be the full continuum. We describe here a generalization to higher type of Kleene's realizability, one case of which, -realizability, uses general recursive functions throughout, both to realize theorems and to interpret choice sequences. -realizability validates a version of the bar theorem and the usual continuity (...)
    Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  3. T. Thacher Robinson (1969). Review: Richard E. Vesley, On Strengthening Intuitionistic Logic. [REVIEW] Journal of Symbolic Logic 34 (2):307-307.score: 450.0
    Direct download  
     
    My bibliography  
     
    Export citation  
  4. N. D. Goodman & R. E. Vesley (1987). Obituary: John R. Myhill (1923–1987). History and Philosophy of Logic 8 (2):243-244.score: 240.0
  5. A. Kino, John Myhill & Richard Eugene Vesley (eds.) (1970). Intuitionism and Proof Theory. Amsterdam,North-Holland Pub. Co..score: 240.0
    Our first aim is to make the study of informal notions of proof plausible. Put differently, since the raison d'étre of anything like existing proof theory seems to rest on such notions, the aim is nothing else but to make a case for proof theory; ...
    Direct download  
     
    My bibliography  
     
    Export citation  
  6. Richard Vesley (1999). Constructivity in Geometry. History and Philosophy of Logic 20 (3-4):291-294.score: 240.0
    We review and contrast three ways to make up a formal Euclidean geometry which one might call constructive, in a computational sense. The starting point is the first-order geometry created by Tarski.
    Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  7. Richard Vesley (1979). Review: A. S. Troelstra, Choice Sequences. A Chapter of Intuitionistic Mathematics. [REVIEW] Journal of Symbolic Logic 44 (2):275-276.score: 240.0
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  8. R. E. Vesley (1967). Review: Clifford Spector, Provably Recursive Functionals of Analysis: A Consistency Proof of Analysis by an Extension of Principles Formulated in Current Intuitionistic Mathematics. [REVIEW] Journal of Symbolic Logic 32 (1):128-128.score: 240.0
    Direct download  
     
    My bibliography  
     
    Export citation  
  9. R. E. Vesley (1969). Review: B. Van Rootselaar, Intuition Und Konstruktion. [REVIEW] Journal of Symbolic Logic 34 (4):656-656.score: 240.0
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  10. R. E. Vesley (1967). Review: Georg Kreisel, Mathematical Logic. [REVIEW] Journal of Symbolic Logic 32 (3):419-420.score: 240.0
    Direct download  
     
    My bibliography  
     
    Export citation  
  11. Melinda Lombard & Richard Vesley (1998). A Common Axiom Set for Classical and Intuitionistic Plane Geometry. Annals of Pure and Applied Logic 95 (1-3):229-255.score: 240.0
    We describe a first order axiom set which yields the classical first order Euclidean geometry of Tarski when used with classical logic, and yields an intuitionistic Euclidean geometry when used with intuitionistic logic. The first order language has a single six place atomic predicate and no function symbols. The intuitionistic system has a computational interpretation in recursive function theory, that is, a realizability interpretation analogous to those given by Kleene for intuitionistic arithmetic and analysis. This interpretation shows the unprovability in (...)
    Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  12. Wolfe Mays, Rainer Bäuerle, R. E. Vesley, G. L. Forguson, John Bacon, George Roussopouls, Rezension von W. Bonsiepen & N. Guicciaradini (1989). Book Review. [REVIEW] History and Philosophy of Logic 10 (2):227-249.score: 240.0
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  13. R. E. Vesley (1973). Review: A. S. Troelstra, B. Van Rootselaar, J. F. Staal, The Theory of Choice Sequences. [REVIEW] Journal of Symbolic Logic 38 (2):332-332.score: 240.0
    Direct download  
     
    My bibliography  
     
    Export citation  
  14. R. E. Vesley (1969). Review: B. Van Rootselaar, On Intuitionistic Difference Relations. [REVIEW] Journal of Symbolic Logic 34 (3):519-520.score: 240.0
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  15. R. E. Vesley (1968). Review: John Myhill, Notes Towards an Axiomatization of Intuitionistic Logic. [REVIEW] Journal of Symbolic Logic 33 (2):290-290.score: 240.0
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  16. R. E. Vesley (1971). Review: Kurt Schutte, Vollstandige Systeme Modaler und Intuitionistischer Logik. [REVIEW] Journal of Symbolic Logic 36 (3):522-522.score: 240.0
    Translate to English
    | Direct download  
     
    My bibliography  
     
    Export citation  
  17. R. E. Vesley (1970). Review: Robert R. Tompkins, On Kleene's Recursive Realizability as an Interpretation for Intuitionistic Elementary Number Theory. [REVIEW] Journal of Symbolic Logic 35 (3):475-475.score: 240.0
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  18. R. E. Vesley (1966). Review: W. W. Tait, Functionals Defined by Transfinite Recursion. [REVIEW] Journal of Symbolic Logic 31 (3):509-510.score: 240.0
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  19. R. E. Vesley (1996). Tait WW. Functionals Defined by Transfinite Recursion. Journal of Symbolic Logic 31 (3):509-510.score: 240.0
    Direct download  
     
    My bibliography  
     
    Export citation  
  20. John Myhill (1972). Review: Errett Bishop, Foundations of Constructive Analysis; Errett Bishop, A. Kino, J. Myhill, R. E. Vesley, Mathematics as a Numerical Language. [REVIEW] Journal of Symbolic Logic 37 (4):744-747.score: 140.0
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  21. Helmut Schwichtenberg (1974). Review: Charles Parsons, A. Kino, J. Myhill, R. E. Vesley, On a Number Theoretic Choice Schema and its Relation to Induction; Charles Parsons, Review of the Foregoing; Charles Parsons, On $N$-Quantifier Induction. [REVIEW] Journal of Symbolic Logic 39 (2):342-342.score: 140.0
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  22. Robert A. DiPaola (1975). Review: Per Martin-Lof, The Definition of Random Sequences; Per Martin-Lof, The Literature on von Mises' Kollectivs Revisited; Per Martin-Lof, A. Kino, J. Myhill, R. E. Vesley, On the Notion of Randomness. [REVIEW] Journal of Symbolic Logic 40 (3):450-452.score: 140.0
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  23. William A. Howard (1974). Review: R. E. Vesley, A. Kino, J. Myhill, A Palatable Substitute for Kripke's Schema. [REVIEW] Journal of Symbolic Logic 39 (2):334-334.score: 140.0
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  24. Helmut Pfeiffer (1973). Review: David Isles, A. Kino, J. Myhill, R. E. Vesley, Regular Ordinals and Normal Forms. [REVIEW] Journal of Symbolic Logic 38 (2):334-335.score: 140.0
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  25. J. van Heijenoort (1975). Review: Paul Bernays, A. Kino, J. Myhill, R. E. Vesley, On the Original Gentzen Consistency Proof for Number Theory. [REVIEW] Journal of Symbolic Logic 40 (1):95-95.score: 140.0
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation