100 found
Order:
Disambiguations:
Robert K. Meyer [100]Robert Kenneth Meyer [1]
  1. Richard Routley, Val Plumwood, Robert K. Meyer & Ross T. Brady (1982). Relevant Logics and Their Rivals. Ridgeview.
     
    Export citation  
     
    My bibliography   80 citations  
  2. Jc Beall, Ross Brady, J. Michael Dunn, A. P. Hazen, Edwin Mares, Robert K. Meyer, Graham Priest, Greg Restall, David Ripley, John Slaney & Richard Sylvan (2012). On the Ternary Relation and Conditionality. Journal of Philosophical Logic 41 (3):595 - 612.
    One of the most dominant approaches to semantics for relevant (and many paraconsistent) logics is the Routley-Meyer semantics involving a ternary relation on points. To some (many?), this ternary relation has seemed like a technical trick devoid of an intuitively appealing philosophical story that connects it up with conditionality in general. In this paper, we respond to this worry by providing three different philosophical accounts of the ternary relation that correspond to three conceptions of conditionality. We close by briefly discussing (...)
    Direct download (8 more)  
     
    Export citation  
     
    My bibliography   6 citations  
  3.  70
    Robert K. Meyer, Richard Routley & J. Michael Dunn (1979). Curry's Paradox. Analysis 39 (3):124 - 128.
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   27 citations  
  4.  38
    Richard Routley & Robert K. Meyer (1972). The Semantics of Entailment—II. Journal of Philosophical Logic 1 (1):53 - 73.
  5.  30
    Richard Routley & Robert K. Meyer (1972). The Semantics of Entailment — III. Journal of Philosophical Logic 1 (2):192 - 208.
  6. Robert K. Meyer (1987). God Exists! Noûs 21 (3):345-361.
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   4 citations  
  7. Robert K. Meyer (1998). In Memoriam: Richard (Routley) Sylvan, 1935-1996. Bulletin of Symbolic Logic 4 (3):338-340.
  8. Robert K. Meyer & Richard Routley (1972). Algebraic Analysis of Entailment I. Logique Et Analyse 15:407-428.
    No categories
     
    Export citation  
     
    My bibliography   19 citations  
  9. Paul B. Thistlewaite, M. A. Mcrobbie & Robert K. Meyer (1988). Automated Theorem-Proving in Non-Classical Logics. Monograph Collection (Matt - Pseudo).
     
    Export citation  
     
    My bibliography   7 citations  
  10.  15
    Robert K. Meyer & Richard Routley (1974). Classical Relevant Logics II. Studia Logica 33 (2):183 - 194.
  11. Edwin D. Mares & Robert K. Meyer (2001). Relevant Logics. In Lou Goble (ed.), The Blackwell Guide to Philosophical Logic. Blackwell Publishers 280--308.
     
    Export citation  
     
    My bibliography   6 citations  
  12.  34
    Robert K. Meyer & Richard Routley (1973). Classical Relevant Logics. I. Studia Logica 32 (1):51 - 68.
  13.  6
    Robert K. Meyer, J. Michael Dunn & Hugues Leblanc (1974). Completeness of Relevant Quantification Theories. Notre Dame Journal of Formal Logic 15 (1):97-121.
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography   14 citations  
  14.  43
    Richard Routley & Robert K. Meyer (1976). Dialectical Logic, Classical Logic, and the Consistency of the World. Studies in East European Thought 16 (1-2):1-25.
  15.  9
    Robert K. Meyer (2004). Ternary Relations and Relevant Semantics. Annals of Pure and Applied Logic 127 (1-3):195-217.
    Modus ponens provides the central theme. There are laws, of the form A→C. A logic L collects such laws. Any datum A provides input to the laws of L. The central ternary relation R relates theories L,T and U, where U consists of all of the outputs C got by applying modus ponens to major premises from L and minor premises from T. Underlying this relation is a modus ponens product operation on theories L and T, whence RLTU iff LTU. (...)
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography   3 citations  
  16.  21
    Robert K. Meyer & Chris Mortensen (1984). Inconsistent Models for Relevant Arithmetics. Journal of Symbolic Logic 49 (3):917-929.
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography   8 citations  
  17.  22
    Robert K. Meyer & Hiroakira Ono (1994). The Finite Model Property for BCK and BCIW. Studia Logica 53 (1):107 - 118.
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography   5 citations  
  18.  18
    Robert K. Meyer (1976). Relevant Arithmetic. Bulletin of the Section of Logic 5 (4):133-135.
    Direct download  
     
    Export citation  
     
    My bibliography   5 citations  
  19.  2
    Robert K. Meyer & J. Michael Dunn (1969). E, R, and $Gamma$. Journal of Symbolic Logic 34 (3):460-474.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography   11 citations  
  20.  20
    Robert K. Meyer & Richard Routley (1977). Extensional Reduction—I. The Monist 60 (3):355-369.
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   7 citations  
  21.  4
    Yoko Motohama, Robert K. Meyer & Mariangiola Dezani-Ciancaglini (2002). The Semantics of Entailment Omega. Notre Dame Journal of Formal Logic 43 (3):129-145.
    This paper discusses the relation between the minimal positive relevant logic B and intersection and union type theories. There is a marvelous coincidence between these very differently motivated research areas. First, we show a perfect fit between the Intersection Type Discipline ITD and the tweaking BT of B, which saves implication and conjunction but drops disjunction . The filter models of the -calculus (and its intimate partner Combinatory Logic CL) of the first author and her coauthors then become theory models (...)
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography   3 citations  
  22.  6
    Richard Routley & Robert K. Meyer (1977). The Semantics of Entailment. Journal of Symbolic Logic 42 (2):315-316.
    Direct download  
     
    Export citation  
     
    My bibliography   6 citations  
  23.  17
    Robert K. Meyer & Errol P. Martin (1986). Logic on the Australian Plan. Journal of Philosophical Logic 15 (3):305 - 332.
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography   6 citations  
  24.  20
    Robert K. Meyer (1974). Entailment is Not Strict Implication. Australasian Journal of Philosophy 52 (3):212 – 231.
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   7 citations  
  25.  54
    Robert K. Meyer (1980). Syntactical Treatment of Negation. Analysis 40 (2):74 - 78.
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  26.  14
    Robert K. Meyer & Michael A. McRobbie (1982). Multisets and Relevant Implication I. Australasian Journal of Philosophy 60 (2):107 – 139.
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   6 citations  
  27.  8
    Edwin D. Mares & Robert K. Meyer (1992). The Admissibility of $\Gamma$ in ${\Rm R}4$. Notre Dame Journal of Formal Logic 33 (2):197-206.
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   4 citations  
  28. Richard Routley & Robert K. Meyer (1976). Every Sentential Logic has a Two-Valued Worlds Semantics. Logique Et Analyse 19 (74-76):345-365.
     
    Export citation  
     
    My bibliography   8 citations  
  29.  14
    Robert K. Meyer (1974). New Axiomatics for Relevant Logics, I. Journal of Philosophical Logic 3 (1/2):53 - 86.
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography   7 citations  
  30.  34
    Robert K. Meyer & Karel Lambert (1968). Universally Free Logic and Standard Quantification Theory. Journal of Symbolic Logic 33 (1):8-26.
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography   6 citations  
  31.  32
    Robert K. Meyer (1971). Entailment. Journal of Philosophy 68 (21):808-818.
    No categories
    Direct download (5 more)  
     
    Export citation  
     
    My bibliography   6 citations  
  32.  15
    Robert K. Meyer, Steve Giambrone & Ross T. Brady (1984). Where Gamma Fails. Studia Logica 43 (3):247 - 256.
    A major question for the relevant logics has been, “Under what conditions is Ackermann's ruleγ from -A ∨B andA to inferB, admissible for one of these logics?” For a large number of logics and theories, the question has led to an affirmative answer to theγ problem itself, so that such an answer has almost come to be expected for relevant logics worth taking seriously. We exhibit here, however, another large and interesting class of logics-roughly, the Boolean extensions of theW — (...)
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   5 citations  
  33. Koushik Pal & Robert K. Meyer (2005). Basic Relevant Theories for Combinators at Levels I and II. Australasian Journal of Logic 3 (14-32):14-32.
    The system B+ is the minimal positive relevant logic. B+ is trivially extended to B+T on adding a greatest truth T. If we leave ∨ out of the formation apparatus, we get the fragment B∧T. It is known that the set of ALL B∧T theories provides a good model for the combinators CL at Level-I, which is the theory level. Restoring ∨ to get back B+T was not previously fruitful at Level-I, because the set of all B+T theories is NOT (...)
     
    Export citation  
     
    My bibliography   2 citations  
  34.  2
    Robert K. Meyer (1976). Metacompleteness. Notre Dame Journal of Formal Logic 17 (4):501-516.
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography   7 citations  
  35.  4
    John K. Slaney & Robert K. Meyer (1992). A Structurally Complete Fragment of Relevant Logic. Notre Dame Journal of Formal Logic 33 (4):561-566.
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography   4 citations  
  36.  21
    Harvey Friedman & Robert K. Meyer (1992). Whither Relevant Arithmetic? Journal of Symbolic Logic 57 (3):824-831.
    Based on the relevant logic R, the system R# was proposed as a relevant Peano arithmetic. R# has many nice properties: the most conspicuous theorems of classical Peano arithmetic PA are readily provable therein; it is readily and effectively shown to be nontrivial; it incorporates both intuitionist and classical proof methods. But it is shown here that R# is properly weaker than PA, in the sense that there is a strictly positive theorem QRF of PA which is unprovable in R#. (...)
    Direct download (6 more)  
     
    Export citation  
     
    My bibliography   3 citations  
  37. Robert K. Meyer (1968). Entailment and Relevant Implication. Logique Et Analyse 11:472-479.
     
    Export citation  
     
    My bibliography   8 citations  
  38.  10
    Robert K. Meyer (1973). Conservative Extension in Relevant Implication. Studia Logica 31 (1):39 - 48.
  39.  11
    Robert K. Meyer (1980). Sentential Constants in Relevance Implication. Bulletin of the Section of Logic 9 (1):33-36.
    Sentential constants have been part of the R environment since Church [1]. They have had diverse uses in explicating relevant ideas and in sim- plifying them technically. Of most interest have been the Ackermann pair of constants t; f, functioning conceptually as a least truth, and as a greatest , under the ordering of propositions under true impli- cation. Also interesting have been the Church constants F; T, functioning similarly as least greatest propositions.
    Direct download  
     
    Export citation  
     
    My bibliography  
  40.  10
    Robert K. Meyer (1990). Peirced Clean Through. Bulletin of the Section of Logic 19 (3):100-101.
    Direct download  
     
    Export citation  
     
    My bibliography   2 citations  
  41.  4
    J. Michael Dunn & Robert K. Meyer (1971). Algebraic Completeness Results for Dummett's LC and Its Extensions. Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 17 (1):225-230.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  42.  4
    Michael A. McRobbie & Robert K. Meyer (1979). A Note on the Admissibility of Cut in Relevant Tableau Systems. Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 25 (32):511-512.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  43.  4
    Robert K. Meyer (1968). An Undecidability Result in the Theory of Relevant Implication. Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 14 (13-17):255-262.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  44.  4
    Robert K. Meyer & Zane Parks (1972). Independent Axioms for the Implicational Fragment of Sobociński's Three-Valued Logic. Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 18 (19-20):291-295.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  45.  20
    Robert K. Meyer & Richard Routley (1974). E is a Conservative Extension of Eī. Philosophia 4 (2-3):223-249.
    No categories
    Direct download (6 more)  
     
    Export citation  
     
    My bibliography   4 citations  
  46.  6
    Robert K. Meyer (1970). RI the Bounds of Finitude. Mathematical Logic Quarterly 16 (7):385-387.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography   4 citations  
  47.  5
    Robert K. Meyer (1976). Ackermann, Takeuti, and Schnitt: For Higher-Order Relevant Logic. Bulletin of the Section of Logic 5 (4):138-142.
    Direct download  
     
    Export citation  
     
    My bibliography   3 citations  
  48.  2
    Richard Routley & Robert K. Meyer (1976). Dialectical Logic, Classical Logic, and the Consistency of the World. Studies in Soviet Thought 16 (1-2):1-25.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography   2 citations  
  49. Richard Routley, Robert K. Meyer, Val Plumwood & Ross T. Brady (1988). Relevant Logics and Their Rivals: Part 1. The Basic Philosophical and Semantical Theory. Studia Logica 47 (2):169-172.
     
    Export citation  
     
    My bibliography   1 citation  
  50.  57
    Robert K. Meyer & Greg Restall, “Strenge” Arithmetics.
    In Entailment, Anderson and Belnap motivated their modification E of Ackermann’s strenge Implikation Π Π’ as a logic of relevance and necessity. The kindred system R was seen as relevant but not as modal. Our systems of Peano arithmetic R# and omega arithmetic R## were based on R to avoid fallacies of relevance. But problems arose as to which arithmetic sentences were (relevantly) true. Here we base analogous systems on E to solve those problems. Central to motivating E is the (...)
    Direct download  
     
    Export citation  
     
    My bibliography  
1 — 50 / 100