4 found
Sort by:
  1. Francesco Paoli, Matthew Spinks & Robert Veroff (2008). Abelian Logic and the Logics of Pointed Lattice-Ordered Varieties. Logica Universalis 2 (2):209-233.
    We consider the class of pointed varieties of algebras having a lattice term reduct and we show that each such variety gives rise in a natural way, and according to a regular pattern, to at least three interesting logics. Although the mentioned class includes several logically and algebraically significant examples (e.g. Boolean algebras, MV algebras, Boolean algebras with operators, residuated lattices and their subvarieties, algebras from quantum logic or from depth relevant logic), we consider here in greater detail Abelian ℓ-groups, (...)
    Direct download (6 more)  
     
    My bibliography  
     
    Export citation  
  2. Matthew Spinks & Robert Veroff (2008). Constructive Logic with Strong Negation is a Substructural Logic. I. Studia Logica 88 (3):325 - 348.
    The goal of this two-part series of papers is to show that constructive logic with strong negation N is definitionally equivalent to a certain axiomatic extension NFL ew of the substructural logic FL ew . In this paper, it is shown that the equivalent variety semantics of N (namely, the variety of Nelson algebras) and the equivalent variety semantics of NFL ew (namely, a certain variety of FL ew -algebras) are term equivalent. This answers a longstanding question of Nelson [30]. (...)
    Direct download (7 more)  
     
    My bibliography  
     
    Export citation  
  3. Michael Beeson, Robert Veroff & Larry Wos (2005). Double-Negation Elimination in Some Propositional Logics. Studia Logica 80 (2-3):195 - 234.
    This article answers two questions (posed in the literature), each concerning the guaranteed existence of proofs free of double negation. A proof is free of double negation if none of its deduced steps contains a term of the formn(n(t)) for some term t, where n denotes negation. The first question asks for conditions on the hypotheses that, if satisfied, guarantee the existence of a double-negation-free proof when the conclusion is free of double negation. The second question asks about the existence (...)
    Direct download (6 more)  
     
    My bibliography  
     
    Export citation  
  4. Robert Veroff & Matthew Spinks (2004). On a Homomorphism Property of Hoops. Bulletin of the Section of Logic 33 (3):135-142.
    No categories
    Direct download  
     
    My bibliography  
     
    Export citation