36 found
Sort by:
Disambiguations:
S. B. Cooper [20]S. Barry Cooper [18]
  1. S. Barry Cooper (2013). What Makes A Computation Unconventional? In Gordana Dodig-Crnkovic Raffaela Giovagnoli (ed.), Computing Nature. 255--269.
    No categories
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  2. S. B. Cooper & Andrea Sorbi (eds.) (2011). Computability in Context: Computation and Logic in the Real World. World Scientific.
    Recent new paradigms of computation, based on biological and physical models, address in a radically new way questions of efficiency and challenge assumptions ...
    Direct download  
     
    My bibliography  
     
    Export citation  
  3. Samuel R. Buss, S. Barry Cooper, Benedikt Löwe & Andrea Sorbi (2009). Preface. Annals of Pure and Applied Logic 160 (3):229-230.
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  4. S. Barry Cooper, Herman Geuvers, Anand Pillay & Jouko Väänänen (2008). Preface. Annals of Pure and Applied Logic 156 (1):1-2.
    Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  5. S. Barry Cooper & Angsheng Li (2008). On Lachlan's Major Sub-Degree Problem. Archive for Mathematical Logic 47 (4):341-434.
    The Major Sub-degree Problem of A. H. Lachlan (first posed in 1967) has become a long-standing open question concerning the structure of the computably enumerable (c.e.) degrees. Its solution has important implications for Turing definability and for the ongoing programme of fully characterising the theory of the c.e. Turing degrees. A c.e. degree a is a major subdegree of a c.e. degree b > a if for any c.e. degree x, ${{\bf 0' = b \lor x}}$ if and only if (...)
    No categories
    Direct download (4 more)  
     
    My bibliography  
     
    Export citation  
  6. Mariya I. Soskova & S. Barry Cooper (2008). How Enumeration Reducibility Yields Extended Harrington Non-Splitting. Journal of Symbolic Logic 73 (2):634 - 655.
    Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  7. S. B. Cooper, Benedikt Löwe & Andrea Sorbi (eds.) (2007). New Computational Paradigms: Changing Conceptions of What is Computable. Springer.
    Logicians and theoretical physicists will also benefit from this book.
    Direct download  
     
    My bibliography  
     
    Export citation  
  8. M. M. Arslanov, C. T. Chong, S. B. Cooper & Y. Yang (2005). The Minimal E-Degree Problem in Fragments of Peano Arithmetic. Annals of Pure and Applied Logic 131 (1-3):159-175.
    Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  9. S. B. Cooper & Andrew E. M. Lewis (2005). Properly Sigma~2 Minimal Degrees and 0" Complementation. Mathematical Logic Quarterly 51 (3):274.
    No categories
    Direct download  
     
    My bibliography  
     
    Export citation  
  10. S. Barry Cooper, Angsheng Li, Andrea Sorbi & Yue Yang (2005). Bounding and Nonbounding Minimal Pairs in the Enumeration Degrees. Journal of Symbolic Logic 70 (3):741 - 766.
    We show that every nonzero $\Delta _{2}^{0}$ e-degree bounds a minimal pair. On the other hand, there exist $\Sigma _{2}^{0}$ e-degrees which bound no minimal pair.
    Direct download (4 more)  
     
    My bibliography  
     
    Export citation  
  11. M. Arslanov & S. B. Cooper (2004). There is No Low Maximal D.C.E. Degree - Corrigendum. Mathematical Logic Quarterly 50 (6):628.
    No categories
    Direct download (5 more)  
     
    My bibliography  
     
    Export citation  
  12. S. Barry Cooper & Angsheng Li (2002). Splitting and Nonsplitting, II: A $Low_2$ C.E. Degree Above Which 0' is Not Splittable. Journal of Symbolic Logic 67 (4):1391-1430.
    It is shown that there exists a low2 Harrington non-splitting base-that is, a low2 computably enumerable (c.e.) degree a such that for any c.e. degrees x, y, if $0' = x \vee y$ , then either $0' = x \vee a$ or $0' = y \vee a$ . Contrary to prior expectations, the standard Harrington non-splitting construction is incompatible with the $low_{2}-ness$ requirements to be satisfied, and the proof given involves new techniques with potentially wider application.
    Direct download (6 more)  
     
    My bibliography  
     
    Export citation  
  13. S. Barry Cooper, Angsheng Li & Xiaoding Yi (2002). On the Distribution of Lachlan Nonsplitting Bases. Archive for Mathematical Logic 41 (5):455-482.
    We say that a computably enumerable (c.e.) degree b is a Lachlan nonsplitting base (LNB), if there is a computably enumerable degree a such that a > b, and for any c.e. degrees w,v ≤ a, if a ≤ w or; v or; b then either a ≤ w or; b or a ≤ v or; b. In this paper we investigate the relationship between bounding and nonbounding of Lachlan nonsplitting bases and the high /low hierarchy. We prove that there (...)
    No categories
    Direct download (4 more)  
     
    My bibliography  
     
    Export citation  
  14. S. B. Cooper (2001). On a Conjecture of Kleene and Post. Mathematical Logic Quarterly 47 (1):3-34.
    No categories
    Direct download (4 more)  
     
    My bibliography  
     
    Export citation  
  15. M. Arslanov, S. B. Cooper & A. Li (2000). There is No Low Maximal D.C.E. Degree. Mathematical Logic Quarterly 46 (3):409-416.
    No categories
    Direct download (5 more)  
     
    My bibliography  
     
    Export citation  
  16. S. B. Cooper & J. K. Truss (eds.) (1999). Models and Computability: Invited Papers From Logic Colloquium '97, European Meeting of the Association for Symbolic Logic, Leeds, July 1997. Cambridge University Press.
    Together, Models and Computability and its sister volume Sets and Proofs will provide readers with a comprehensive guide to the current state of mathematical logic. All the authors are leaders in their fields and are drawn from the invited speakers at 'Logic Colloquium '97' (the major international meeting of the Association of Symbolic Logic). It is expected that the breadth and timeliness of these two volumes will prove an invaluable and unique resource for specialists, post-graduate researchers, and the informed and (...)
    Direct download  
     
    My bibliography  
     
    Export citation  
  17. S. B. Cooper (1998). 1997 European Summer Meeting of the Association for Symbolic Logic. Bulletin of Symbolic Logic 4 (1):55-117.
    Direct download  
     
    My bibliography  
     
    Export citation  
  18. S. B. Cooper, T. A. Slaman & S. S. Wainer (eds.) (1996). Computability, Enumerability, Unsolvability: Directions in Recursion Theory. Cambridge University Press.
    The fundamental ideas concerning computation and recursion naturally find their place at the interface between logic and theoretical computer science. The contributions in this book, by leaders in the field, provide a picture of current ideas and methods in the ongoing investigations into the pure mathematical foundations of computability theory. The topics range over computable functions, enumerable sets, degree structures, complexity, subrecursiveness, domains and inductive inference. A number of the articles contain introductory and background material which it is hoped will (...)
    Direct download  
     
    My bibliography  
     
    Export citation  
  19. S. Barry Cooper & Andrea Sorbi (1996). Noncappable Enumeration Degrees Below 0'e. [REVIEW] Journal of Symbolic Logic 61 (4):1347 - 1363.
    We prove that there exists a noncappable enumeration degree strictly below 0' e.
    Direct download (5 more)  
     
    My bibliography  
     
    Export citation  
  20. S. Barry Cooper, Andrea Sorbi & Xiaoding Yi (1996). Cupping and Noncupping in the Enumeration Degrees of ∑20 Sets. Annals of Pure and Applied Logic 82 (3):317-342.
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  21. S. Barry Cooper, Andrea Sorbi & Xiaoding Yi (1996). Cupping and Noncupping in the Enumeration Degrees of∑< Sub> 2< Sup> 0 Sets. Annals of Pure and Applied Logic 82 (3):317-342.
    Direct download  
     
    My bibliography  
     
    Export citation  
  22. S. Barry Cooper & Xiaoding Yi (1995). The Discontinuity of Splitting in the Recursively Enumerable Degrees. Archive for Mathematical Logic 34 (4):247-256.
    In this paper we examine a class of pairs of recursively enumerable degrees, which is related to the Slaman-Soare Phenomenon.
    No categories
    Direct download (5 more)  
     
    My bibliography  
     
    Export citation  
  23. S. Barry Cooper (1991). The Density of the Low2 N-R.E. Degrees. Archive for Mathematical Logic 31 (1):19-24.
    No categories
    Direct download (5 more)  
     
    My bibliography  
     
    Export citation  
  24. S. B. Cooper (1989). A Jump Class of Noncappable Degrees. Journal of Symbolic Logic 54 (2):324-353.
    Direct download (5 more)  
     
    My bibliography  
     
    Export citation  
  25. S. B. Cooper (1989). The Strong Anticupping Property for Recursively Enumerable Degrees. Journal of Symbolic Logic 54 (2):527-539.
    Direct download (6 more)  
     
    My bibliography  
     
    Export citation  
  26. S. B. Cooper & C. S. Copestake (1988). Properly Σ2 Enumeration Degrees. Mathematical Logic Quarterly 34 (6):491-522.
    No categories
    Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  27. S. Barry Cooper (1987). Enumeration Reducibility Using Bounded Information: Counting Minimal Covers. Mathematical Logic Quarterly 33 (6):537-560.
    No categories
    Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  28. S. Barry Cooper & Richard L. Epstein (1987). Complementing Below Recursively Enumerable Degrees. Annals of Pure and Applied Logic 34 (1):15-32.
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  29. Kevin McEvoy & S. Barry Cooper (1985). On Minimal Pairs of Enumeration Degrees. Journal of Symbolic Logic 50 (4):983-1001.
    Direct download (6 more)  
     
    My bibliography  
     
    Export citation  
  30. S. B. Cooper (1984). Partial Degrees and the Density Problem. Part 2: The Enumeration Degrees of the ∑2 Sets Are Dense. Journal of Symbolic Logic 49 (2):503 - 513.
    Direct download (5 more)  
     
    My bibliography  
     
    Export citation  
  31. S. B. Cooper (1982). Partial Degrees and the Density Problem. Journal of Symbolic Logic 47 (4):854-859.
    Direct download (6 more)  
     
    My bibliography  
     
    Export citation  
  32. S. B. Cooper (1974). Minimal Pairs and High Recursively Enumerable Degrees. Journal of Symbolic Logic 39 (4):655-660.
    Direct download (5 more)  
     
    My bibliography  
     
    Export citation  
  33. S. B. Cooper (1973). Minimal Degrees and the Jump Operator. Journal of Symbolic Logic 38 (2):249-271.
  34. S. B. Cooper (1973). Review: J. Myhill, Category Methods in Recursion Theory. [REVIEW] Journal of Symbolic Logic 38 (4):654-654.
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  35. S. B. Cooper (1972). Degrees of Unsolvability Complementary Between Recursively Enumerable Degrees, Part 1. Annals of Mathematical Logic 4 (1):31-73.
    No categories
    Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  36. S. B. Cooper (1972). Jump Equivalence of the ? 0/2 Hyperhyperimmune Sets. Journal of Symbolic Logic 37 (3):598-600.
    Direct download (5 more)  
     
    My bibliography  
     
    Export citation