20 found
Sort by:
  1. Siegfried Gottwald, Many-Valued Logic. Stanford Encyclopedia of Philosophy.
    Direct download  
     
    My bibliography  
     
    Export citation  
  2. Siegfried Gottwald (2008). Mathematical Fuzzy Logics. Bulletin of Symbolic Logic 14 (2):210-239.
    The last decade has seen an enormous development in infinite-valued systems and in particular in such systems which have become known as mathematical fuzzy logics. The paper discusses the mathematical background for the interest in such systems of mathematical fuzzy logics, as well as the most important ones of them. It concentrates on the propositional cases, and mentions the first-order systems more superficially. The main ideas, however, become clear already in this restricted setting.
    Direct download (6 more)  
     
    My bibliography  
     
    Export citation  
  3. Siegfried Gottwald (2006). Universes of Fuzzy Sets and Axiomatizations of Fuzzy Set Theory. Part I: Model-Based and Axiomatic Approaches. [REVIEW] Studia Logica 82 (2):211 - 244.
    For classical sets one has with the cumulative hierarchy of sets, with axiomatizations like the system ZF, and with the category SET of all sets and mappings standard approaches toward global universes of all sets. We discuss here the corresponding situation for fuzzy set theory.Our emphasis will be on various approaches toward (more or less naively formed)universes of fuzzy sets as well as on axiomatizations, and on categories of fuzzy sets.
    Direct download (5 more)  
     
    My bibliography  
     
    Export citation  
  4. Siegfried Gottwald (2006). Universes of Fuzzy Sets and Axiomatizations of Fuzzy Set Theory. Part II: Category Theoretic Approaches. Studia Logica 84 (1):23 - 50.
    For classical sets one has with the cumulative hierarchy of sets, with axiomatizations like the system ZF, and with the category SET of all sets and mappings standard approaches toward global universes of all sets.We discuss here the corresponding situation for fuzzy set theory. Our emphasis will be on various approaches toward (more or less naively formed) universes of fuzzy sets as well as on axiomatizations, and on categories of fuzzy sets.
    Direct download (5 more)  
     
    My bibliography  
     
    Export citation  
  5. Siegfried Gottwald (1997). Fuzzy-Logik und approximatives Schließen - ein kurzer Überblick. In Julian Nida-Rümelin & Georg Meggle (eds.), Analyomen 2, Volume I: Logic, Epistemology, Philosophy of Science. De Gruyter 78-86.
    No categories
    Translate to English
    | Direct download  
     
    My bibliography  
     
    Export citation  
  6. Siegfried Gottwald (1989). 5. Anwendungen der mehrwertigen Logik. In Mehrwertige Logik: Eine Einführung in Theorie Und Anwendungen. De Gruyter 251-345.
    No categories
    Translate to English
    | Direct download  
     
    My bibliography  
     
    Export citation  
  7. Siegfried Gottwald (1989). 1. Einleitung. In Mehrwertige Logik: Eine Einführung in Theorie Und Anwendungen. De Gruyter 1-11.
    No categories
    Translate to English
    | Direct download  
     
    My bibliography  
     
    Export citation  
  8. Siegfried Gottwald (1989). Inhaltsverzeichnis. In Mehrwertige Logik: Eine Einführung in Theorie Und Anwendungen. De Gruyter
    No categories
    Translate to English
    | Direct download  
     
    My bibliography  
     
    Export citation  
  9. Siegfried Gottwald (1989). Literaturverzeichnis. In Mehrwertige Logik: Eine Einführung in Theorie Und Anwendungen. De Gruyter 346-365.
    No categories
    Translate to English
    | Direct download  
     
    My bibliography  
     
    Export citation  
  10. Siegfried Gottwald (1989). 2. Mehrwertige Aussagenlogik. In Mehrwertige Logik: Eine Einführung in Theorie Und Anwendungen. De Gruyter 12-83.
    No categories
    Translate to English
    | Direct download  
     
    My bibliography  
     
    Export citation  
  11. Siegfried Gottwald (1989). Mehrwertige Logik: Eine Einführung in Theorie Und Anwendungen. De Gruyter.
    No categories
    Translate to English
    | Direct download  
     
    My bibliography  
     
    Export citation  
  12. Siegfried Gottwald (1989). 4. Mehrwertige Prädikatenlogik. In Mehrwertige Logik: Eine Einführung in Theorie Und Anwendungen. De Gruyter 183-250.
    No categories
    Translate to English
    | Direct download  
     
    My bibliography  
     
    Export citation  
  13. Siegfried Gottwald (1989). Namenverzeichnis. In Mehrwertige Logik: Eine Einführung in Theorie Und Anwendungen. De Gruyter 369-372.
    No categories
    Translate to English
    | Direct download  
     
    My bibliography  
     
    Export citation  
  14. Siegfried Gottwald (1989). Symbolverzeichnis. In Mehrwertige Logik: Eine Einführung in Theorie Und Anwendungen. De Gruyter 366-368.
    No categories
    Translate to English
    | Direct download  
     
    My bibliography  
     
    Export citation  
  15. Siegfried Gottwald (1989). Sachverzeichnis. In Mehrwertige Logik: Eine Einführung in Theorie Und Anwendungen. De Gruyter 373-378.
    No categories
    Translate to English
    | Direct download  
     
    My bibliography  
     
    Export citation  
  16. Siegfried Gottwald (1989). 3. Spezielle Systeme Mehrwertiger Aussagenlogik. In Mehrwertige Logik: Eine Einführung in Theorie Und Anwendungen. De Gruyter 84-182.
    No categories
    Translate to English
    | Direct download  
     
    My bibliography  
     
    Export citation  
  17. Siegfried Gottwald (1989). Vorwort. In Mehrwertige Logik: Eine Einführung in Theorie Und Anwendungen. De Gruyter
    No categories
    Translate to English
    | Direct download  
     
    My bibliography  
     
    Export citation  
  18. Siegfried Gottwald (1984). T-Norms and Φ-Operators as Truth Functions of Many Valued Connectives. Bulletin of the Section of Logic 13 (2):55-58.
    The choice of connectives for many valued propositional logics suitable for theoretical and applicational interests in most cases is an open problem up to now. We will not offer a general solution here, but support the point of view of some recent developments in fuzzy set theory that the triangular norms – t-norms for short – of Schweizer/Sklar [3] and the ϕ-operators of Pedrycz [2] represent quite general classes of connectives at least for many valued logics with truth value set (...)
    Direct download  
     
    My bibliography  
     
    Export citation  
  19. Siegfried Gottwald (1972). Verallgemeinerte Peano‐Systeme. Mathematical Logic Quarterly 18 (1‐3):19-30.
    Translate to English
    | Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  20. Siegfried Gottwald (1971). Zahlbereichskonstruktionen in einer Mehrwertigen Mengenlehre. Mathematical Logic Quarterly 17 (1):145-188.
    Translate to English
    | Direct download (3 more)  
     
    My bibliography  
     
    Export citation