9 found
Order:
  1.  4
    T. E. Forster (1987). Permutation Models in the Sense of Rieger-Bernays. Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 33 (3):201-210.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  2.  9
    T. E. Forster & J. K. Truss (2007). Ramsey's Theorem and König's Lemma. Archive for Mathematical Logic 46 (1):37-42.
    We consider the relation between versions of Ramsey’s Theorem and König’s Infinity Lemma, in the absence of the axiom of choice.
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography  
  3.  10
    T. E. Forster (1985). The Status of the Axiom of Choice in Set Theory with a Universal Set. Journal of Symbolic Logic 50 (3):701-707.
    Direct download (6 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  4.  7
    T. E. Forster (1987). Term Models for Weak Set Theories with a Universal Set. Journal of Symbolic Logic 52 (2):374-387.
    Direct download (6 more)  
     
    Export citation  
     
    My bibliography  
  5.  5
    T. E. Forster (1983). Further Consistency and Independence Results in NF Obtained by the Permutation Method. Journal of Symbolic Logic 48 (2):236-238.
    Direct download (6 more)  
     
    Export citation  
     
    My bibliography  
  6.  2
    T. E. Forster (1987). Permutation Models in the Sense of Rieger‐Bernays. Mathematical Logic Quarterly 33 (3):201-210.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  7.  7
    T. E. Forster & J. K. Truss (2003). Non-Well-Foundedness of Well-Orderable Power Sets. Journal of Symbolic Logic 68 (3):879-884.
    Tarski [5] showed that for any set X, its set w(X) of well-orderable subsets has cardinality strictly greater than that of X, even in the absence of the axiom of choice. We construct a Fraenkel-Mostowski model in which there is an infinite strictly descending sequence under the relation |w (X)| = |Y|. This contrasts with the corresponding situation for power sets, where use of Hartogs' ℵ-function easily establishes that there can be no infinite descending sequence under the relation |P(X)| = (...)
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography  
  8.  12
    T. E. Forster (2003). Reasoning About Theoretical Entities. World Scientific Pub..
    As such this book fills a void in the philosophical literature and presents a challenge to every would-be (anti-)reductionist.
    Direct download  
     
    Export citation  
     
    My bibliography  
  9. T. E. Forster & J. K. Truss (2007). RamseyÔÇÖs Theorem and K├ ÂnigÔÇÖs Lemma. Archive for Mathematical Logic 46 (1):37.
     
    Export citation  
     
    My bibliography