9 found
Order:
  1.  9
    T. E. Forster & J. K. Truss (2007). Ramsey's Theorem and König's Lemma. Archive for Mathematical Logic 46 (1):37-42.
    We consider the relation between versions of Ramsey’s Theorem and König’s Infinity Lemma, in the absence of the axiom of choice.
    Direct download (4 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  2.  4
    T. E. Forster (1987). Permutation Models in the Sense of Rieger-Bernays. Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 33 (3):201-210.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  3.  7
    T. E. Forster (1987). Term Models for Weak Set Theories with a Universal Set. Journal of Symbolic Logic 52 (2):374-387.
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography  
  4.  12
    T. E. Forster (1985). The Status of the Axiom of Choice in Set Theory with a Universal Set. Journal of Symbolic Logic 50 (3):701-707.
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  5.  5
    T. E. Forster (1983). Further Consistency and Independence Results in NF Obtained by the Permutation Method. Journal of Symbolic Logic 48 (2):236-238.
    Direct download (7 more)  
     
    Export citation  
     
    My bibliography  
  6.  2
    T. E. Forster (1987). Permutation Models in the Sense of Rieger‐Bernays. Mathematical Logic Quarterly 33 (3):201-210.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  7.  7
    T. E. Forster & J. K. Truss (2003). Non-Well-Foundedness of Well-Orderable Power Sets. Journal of Symbolic Logic 68 (3):879-884.
    Tarski [5] showed that for any set X, its set w(X) of well-orderable subsets has cardinality strictly greater than that of X, even in the absence of the axiom of choice. We construct a Fraenkel-Mostowski model in which there is an infinite strictly descending sequence under the relation |w (X)| = |Y|. This contrasts with the corresponding situation for power sets, where use of Hartogs' ℵ-function easily establishes that there can be no infinite descending sequence under the relation |P(X)| = (...)
    Direct download (8 more)  
     
    Export citation  
     
    My bibliography  
  8.  12
    T. E. Forster (2003). Reasoning About Theoretical Entities. World Scientific Pub..
    As such this book fills a void in the philosophical literature and presents a challenge to every would-be (anti-)reductionist.
    Direct download  
     
    Export citation  
     
    My bibliography  
  9. T. E. Forster & J. K. Truss (2007). RamseyÔÇÖs Theorem and K├ ÂnigÔÇÖs Lemma. Archive for Mathematical Logic 46 (1):37.
     
    Export citation  
     
    My bibliography