13 found
Sort by:
Disambiguations:
Teun Koetsier [9]T. Koetsier [3]Teunis Koetsier [1]
See also:
Profile: Teunis Koetsier (VU University Amsterdam)
  1. Teun Koetsier (2011). Routes of Learning: Highways, Pathways and Byways in the History of Mathematics. History and Philosophy of Logic 31 (3):293-295.
  2. Teun Koetsier, Karen Vintges & Huib Schwab (2003). Word ik van filosofie een beter mens? Tijdschrift Voor Filosofie 65 (2):389-390.
    No categories
    Translate to English
    |
     
    My bibliography  
     
    Export citation  
  3. Tjeerd B. Jongeling & Teun Koetsier (2002). Blindspots, Self-Reference and the Prediction Paradox. Philosophia 29 (1-4):377-391.
    No categories
    Direct download (8 more)  
     
    My bibliography  
     
    Export citation  
  4. Teun Koetsier (2002). Self-Reference in Finite and Infinite Paradoxes. Logique Et Analyse 45.
     
    My bibliography  
     
    Export citation  
  5. Teun Koetsier (2001). La théorie des machines au XVIe siècle : Tartaglia, Guidobaldo, Galileo. Corpus 39:155-189.
    No categories
    Translate to English
    |
     
    My bibliography  
     
    Export citation  
  6. Teun Koetsier (1999). Lakatos: An Introduction by Brendan Larvor. [REVIEW] Isis: A Journal of the History of Science 90:641-641.
    Direct download  
     
    My bibliography  
     
    Export citation  
  7. Teun Koetsier & Victor Allis (1997). Assaying Supertasks. Logique Et Analyse 159:291-313.
     
    My bibliography  
     
    Export citation  
  8. Victor Allis & Teun Koetsier (1995). On Some Paradoxes of the Infinite II. British Journal for the Philosophy of Science 46 (2):235-247.
    In an earlier paper the authors discussed some super-tasks by means of a kinematical interpretation. In the present paper we show a semi-formal way that a more abstract treatment is possible. The core idea of our approach is simple: if a super-task can be considered as a union of (finite) tasks, it is natural to define the effect of the super-task as the union of the effects of the finite tasks it consists of. We show that this approach enables us (...)
    Direct download (10 more)  
     
    My bibliography  
     
    Export citation  
  9. T. Koetsier (1995). Explanation in the Historiography of Mathematics: The Case of Hamilton's Quaternions. Studies in History and Philosophy of Science Part A 26 (4):593-616.
    Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  10. Bas Jongeling & Teun Koetsier (1993). A Reappraisal of the Hangman Paradox. Philosophia 22 (3-4):299-311.
    Direct download (7 more)  
     
    My bibliography  
     
    Export citation  
  11. Victor Allis & Teunis Koetsier (1991). On Some Paradoxes of the Infinite. British Journal for the Philosophy of Science 42 (2):187-194.
    In the paper below the authors describe three super-tasks. They show that although the abstract notion of a super-task may be, as Benacerraf suggested, a conceptual mismatch, the completion of the three super-tasks involved can be defined rather naturally, without leading to inconsistency, by means of a particular kinematical interpretation combined with a principle of continuity.
    Direct download (10 more)  
     
    My bibliography  
     
    Export citation  
  12. T. Koetsier (1991). Lakatos' Philosophy of Mathematics: A Historical Approach. Distributors for the U.S. And Canada, Elsevier Science Pub. Co..
    In this book, which is both a philosophical and historiographical study, the author investigates the fallibility and the rationality of mathematics by means of rational reconstructions of developments in mathematics. The initial chapters are devoted to a critical discussion of Lakatos' philosophy of mathematics. In the remaining chapters several episodes in the history of mathematics are discussed, such as the appearance of deduction in Greek mathematics and the transition from Eighteenth-Century to Nineteenth-Century analysis. The author aims at developing a notion (...)
     
    My bibliography  
     
    Export citation  
  13. T. Koetsier (1991). Symmetrie, Gruppe, Dualität: Zur Beziehung Zwischen Theoretischer Mathematik Und Anwendungen in Kristallographie Und Baustatik des 19 Jahrhunderts. [REVIEW] British Journal for the History of Science 24 (2):265-266.
    Direct download  
     
    My bibliography  
     
    Export citation